Skip to main content
Log in

Hydrological connectivity drives the propagule pressure of Limnoperna fortunei (Dunker, 1857) in a tropical river–floodplain system

  • INVASIVE SPECIES III
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River–floodplain systems are characterized by high connectivity, which favours the spread of non-native species. In floodplain, floods increase connectivity, which increases the similarity of abiotic conditions among environments. High connectivity and low environmental variability may favour the establishment of non-native species such as Limnoperna fortunei, but this has not yet been tested. We sampled L. fortunei larvae in nine connected lakes and nine isolated lakes to rivers in the upper Paraná River floodplain to evaluate how spatial (connection) and abiotic (environmental variability) factors affect the larvae density of L. fortunei. We considered the rivers as propagule source of L. fortunei because this invasive species has successfully established in rivers, but not in lakes. Our findings revealed that connected lakes had a high larval density of L. fortunei, while isolated lakes had a low density. Isolated lakes presented a high multi-environmental variability, which was strong negatively related with the larval density of L. fortunei. However, the connectivity decreased the multi-environmental variability, indirectly increasing the larval density of L. fortunei. Our study illustrates that permanent connectivity with invaded environments increase the larvae density of L. fortunei in non-invaded environments, which occurs both directly (through propagule dispersion) and indirectly (by decreasing multi-environmental variability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes & H. F. Júlio Jr, 2007. Fish diversity in the upper Paraná River basin: habitats, fisheries, management and conservation. Aquatic Ecosystem Heath and Management 10:174-186.

    Article  Google Scholar 

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology and Hydrobiology 4:255-268.

    Google Scholar 

  • Bergamin, H., B. F. Reis & E. A. G. Zagatto, 1978. A new device for improving sensitivity and stabilization in flow injection analysis. Analytica Chimica Acta 97:427-431.

    Article  Google Scholar 

  • Boltovskoy, D., N. Correa, D. Cataldo & F. Sylvester, 2006. Dispersion and ecological impact of the invasive freshwater bivalve Limnoperna fortunei in the Río de la Plata watershed and beyond. Biological Invasions 8:947-963.

    Article  Google Scholar 

  • Boltovskoy, D. 2015. Limnoperna fortunei: The Ecology, Distribution and Control of a Swiftly Spreading Invasive Fouling Mussel. Cham: Springer.

    Book  Google Scholar 

  • Bonel, N., L. C. Solari & J. Lorda, 2013. Differences in density, shell allometry and growth between two populations of Limnoperna fortunei (Mytilidae) from the Río De La Plata basin, Argentina. Malacologia 56:43-58.

    Article  Google Scholar 

  • Bozelli, R. L., S. M. Thomaz, A. A. Padial, P. M. Lopes & L. M. Bini, 2015. Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233-241.

    Article  CAS  Google Scholar 

  • Cataldo, D., D. Boltovskoy, J. L. Hermosa & C. Canzi, 2005. Temperature dependent larval development rates of Limnoperna fortunei (Mollusca, Bivalvia). Journal of Molluscan Studies 71:41-46.

    Article  Google Scholar 

  • Catford, J. A., P. A. Vesk, D. M. Richardson & P. Pysek, 2012. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology 18:44-62.

    Article  Google Scholar 

  • Darrigran G. & C. Damborenea, 2009. Características da espécie. In Darrigran, G. & C. Damborenea (eds), Introdução a Biologia das Invasões. O mexilhão dourado na América do Sul: biologia, impacto, prevenção e controle. Cubo editora, São Carlos: 43-60.

    Google Scholar 

  • Duncan, R. P., P. Cassey, A. L. Pigot & T. M. Blackburn, 2019. A general model for alien species richness. Biological Invasions 21:2665-2677.

    Article  Google Scholar 

  • Elosegi, A., J. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657:199-215.

    Article  Google Scholar 

  • Elton, C., 1958. The Ecology of Invasions by Animals and Plants. Methuen, London.

    Book  Google Scholar 

  • Espínola, L. A., M. L. Amsler, A. R. Paira, E. E. Drago, M. C. M. Blettler & A. A. Agostinho, 2014. Effects of decadal changes in the hydrological regime of the middle reach of the Paraná River (Argentina) on fish densities. Environmental Biology of Fishes 97:757-771.

    Article  Google Scholar 

  • Ernandes-Silva, J., F. H. Ragonha, S. Jati & A. M. Takeda, 2016a. Limnoperna fortunei Dunker, 1857 larvae in different environments of a Neotropical floodplain: relationships of abiotic variables and phytoplankton with different stages of development. Brazilian Journal of Biology 76:154-161.

    Article  CAS  Google Scholar 

  • Ernandes-Silva, J., F. H. Ragonha, L. C. Rodrigues & R. P. Mormul, 2016b. Freshwater invasibility level depends on the population age structure of the invading mussel species. Biological Invasions 18:1421-1430.

    Article  Google Scholar 

  • Giné, M. F., F. H. Bargamin, E. A. G. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114:191-197.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Freshwater. Blackwell Scientific, Oxford.

    Google Scholar 

  • Havel, J. E., K. E. Kovalenko, S. M. Thomaz, S. Amalfitano & L. B. Kats, 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750:147-170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística, IBGE, 2012. Manual técnico da vegetação brasileira, Vol. 1, 2ª ed. Manuais técnicos em Geociências. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro: 271p.

  • IPCC, 2014. In Core Writing Team, Pachauri, R. K. and L. A. Meyer (eds), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva: 151 pp.

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river–floodplain systems. Canadian Journal of Fisheries Aquatic Sciences 106:110-127.

    Google Scholar 

  • Kasyanov, V. L., G. A. Kryuchkova, V. A. Kulikova & L. A. Medvedeva, 1998. Larvae of Marine Bivalves and Equinoderms. Smithsonian Institution Libraries, Washington, DC.

    Google Scholar 

  • Karatayev, A. Y., D. Boltovskoy, D. K. Padilla & L. E. Burlakova, 2007. The invasive bivalves Dreissena polimorpha and Limnoperna fortunei: parallels, contrasts, potential spread and invasion impacts. Journal of Shellfish Research 26:205-213.

    Article  Google Scholar 

  • King, G. E. & J. G. Howeth, 2019. Propagule pressure and native community interact to influence invasion success in metacommunities. Oikos 128:1549-1564.

    Article  Google Scholar 

  • Kindlmann, P. & F. Burel, 2008. Connectivity measures: a review. Landscape Ecology 23:879-890.

    Google Scholar 

  • Lefcheck, J. S., 2016. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7:573-579.

    Article  Google Scholar 

  • Lockwood, J. L., P. Cassey & T. Blackburn, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology Evolution 20:223-228.

    Article  PubMed  Google Scholar 

  • Lopes, P. M., L. M. Bini, S. A. J. Declerck, V. F. Farjalla, L. C. G. Vieira, C. C. Bonecker, F. A. Lansac-Toha, F. A. Esteves & R. L. Bozelli, 2014. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 9: e109581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDowell, W. G. & R. Sousa, 2019. Mass mortality events of invasive freshwater bivalves: current understanding and potential directions for future research. Frontiers in Ecology and Evolution 7:1-12.

    Article  Google Scholar 

  • McMahon, R. F., 2002. Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59:1235-1244.

    Article  Google Scholar 

  • Meghan, J., S. Thomason, C. D. McCort, M. D. Netherland & B. J. Grewell, 2018. Temporal and nonlinear dispersal patterns of Ludwigia hexapetala in a regulated river. Wetlands Ecology and Management 26:751-762.

    Article  CAS  Google Scholar 

  • Melbourne, B. A., H. V. Cornell, K. F. Davies, C. J. Dugaw, S. Elmendorf, A. L. Freestone, R. J. Hall, S. Harrison, A. Hastings, M. Holland, M. Holyoak, J. Lambrinos, K. Moore & H. Yokomizo, 2007. Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecology Letters 10:77-94.

    Article  PubMed  Google Scholar 

  • Miller, A. L., J. M. Diez, J. J. Sullivan, S. R. Wangen, S. K. Wiser, R. Meffin & R. P. Duncan, 2014. Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology 95:920-929.

    Article  PubMed  Google Scholar 

  • Moi, D. A., J. Silva-Ernandes, M. T. Baumgarthner & R. P. Mormul, 2020. The effects of river-level oscillations on the macroinvertebrates community in a river–floodplain system. Limnology 21:219-232.

    Article  Google Scholar 

  • Naeem, S. & S. Li, 1997. Biodiversity enhances ecosystem reliability. Nature 390:507-509.

    Article  CAS  Google Scholar 

  • Nakano, D., T. Kobayashi & I. Sakaguchi, 2010. Differences in larval dynamics of golden mussel Limnoperna fortunei between dam reservoirs with and without an aeration system. Landscape and Ecological Engineering 6:53-60.

    Article  Google Scholar 

  • Nakano, D., T. Kobayashi, N. Endo & I. Sakaguchi, 2011. Growth rate and settlement of Limnoperna fortunei in a temperate reservoir. Journal of Molluscan Studies 77: 142-148.

    Article  Google Scholar 

  • Oliveira, M. D., L. A. Pellegrin, R. R. Barreto, C. L. Santos & I. G. Xavier, 2004. Área de Ocorrência do Mexilhão Dourado na Bacia do Alto Paraguai entre os anos de 1998 e 2004. Embrapa Pantanal-Corumbá: 19 p (Documentos/Embrapa Pantanal, ISSN 1517–1973; 64).

  • Oliveira, M. D., D. F. Calheiros, C. M. Jacobi & S. K. Hamilton, 2011. Abiotic factors controlling the establishment and abundance of the invasive golden mussel Limnoperna fortunei. Biological Invasions 13:717-729.

    Article  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9(10): e111227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pringle, C. M., 2001. Hydrologic connectivity and the management of biological reserves: a global perspective. Ecological Applications 11:981–98.

    Article  Google Scholar 

  • R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at https://www.R-project.org/]. Accessed 20 August 2020.

  • Ragonha, F. H., R. P. Tramonte & A. M. Takeda, 2015. Colonizing behavior of Limnoperna fortunei druses on the Corbicula fluminea (Mollusca: Bivalvia) on his start of invasion in the Upper Paraná River floodplain. Arquivos do Mudi 19:1-5.

    Article  Google Scholar 

  • Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33:291-315.

    Article  Google Scholar 

  • Redding, D. W., A. L. Pigot, E. E. Dyer, C. H. Sekercioğlu, S. Hark & T. M. Blackburn, 2019. Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103-106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricciardi, A., T. M. Blackburn, J. T. Carlton, J. T. A. Dick, P. E. Hulme, J. C. Iacarella, J. M. Jeschke, A. M. Liebhold, J. L. Lockwood, H. J. Maclsaac, P. Pysek, D. M. Richardson, G. M. Ruiz, D. Simberloff, W. J. Sutherland, D. A. Wardle & D. C. Aldridge, 2017. Invasion science: a horizon scan of emerging challenges and opportunities. Trends in Ecology and Evolution 32:464-474.

    Article  PubMed  Google Scholar 

  • Rosseel, Y., 2012. Lavaan: an R Package for structural equation modeling. Journal of Statistical Software 48:1-36.

    Article  Google Scholar 

  • Simberloff, D., 2009. The role of propagule pressure in biological invasions. Annual Review of Ecology Evolution and Systematics 40:81-102.

    Article  Google Scholar 

  • Sousa, R., A. Novais, R. Costa & D. L. Strayer, 2014. Invasive bivalve in fresh water: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, 735:233-251.

    Article  Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579:1-13.

    Article  Google Scholar 

  • Von Holle, B. & D. Simberloff, 2005. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212-3218.

    Article  Google Scholar 

  • Wang, Y., M. W. Cadottem, Y. Chen, L. H. Fraser, Y. Zhang, F. Huang, S. Luo, N. Shi & M. Loreau, 2019. Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications 10:1-9.

    CAS  Google Scholar 

  • Warfe, D. M., N. E. Pettit, R. H. Magierowski, B. J. Pusey, P. M. Davies, M. M. Douglas & S. E. Bunn, 2013. Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshwater Biology 58:292-305.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel (CAPES): Finance Code 001. Vanessa Ernandes Amo, Jéssica Ernandes-Silva, and Dieison André Moi are thankful for the CAPES Scholarships. Roger Paulo Mormul acknowledges the National Council for Scientific and Technological Development (CNPq) for providing continuous funding through a Scientific Productivity Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Ernandes de Amo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Katya E. Kovalenko, Fernando M. Pelicice, Lee B. Kats, Jonne Kotta & Sidinei M. Thomaz / Aquatic Invasive Species III

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Amo, V.E., Ernandes-Silva, J., Moi, D.A. et al. Hydrological connectivity drives the propagule pressure of Limnoperna fortunei (Dunker, 1857) in a tropical river–floodplain system. Hydrobiologia 848, 2043–2053 (2021). https://doi.org/10.1007/s10750-021-04543-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04543-8

Keywords

Navigation