Skip to main content

Advertisement

Log in

Contribution of macroinvertebrate shredders and aquatic hyphomycetes to litter decomposition in remote insular streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Shredders play a crucial role in litter decomposition in streams. However, in oceanic islands, many streams have low shredder density and richness, and microbes seem to be the main litter decomposers. Here, we evaluate the effects of shredders and aquatic hyphomycetes on litter decomposition in insular streams. Three leaf species differing in physical and chemical characteristics, Alnus glutinosa, Clethra arborea, and Cryptomeria japonica, were enclosed in bags of coarse and fine mesh to allow and avoid macroinvertebrate access to the litter, respectively, and incubated in six streams along a gradient of Limnephilus atlanticus (Trichoptera) density in São Miguel Island. In streams with higher L. atlanticus density, leaf mass loss was higher in coarse than fine mesh bags. However, no difference in litter mass loss was found between bag types in streams with no L. atlanticus, despite the presence of other shredder taxa. These results suggest that when L. atlanticus are present at relatively high densities, they significantly contribute to litter decomposition, while litter decomposition is mainly driven by microbes when L. atlanticus density is low, or they are absent. Moreover, litter decomposition depends on litter quality, with leaves with high nutrient concentration and low concentration of secondary compounds being preferred by shredders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abelho, M., 2001. From litterfall to breakdown in streams: a review. The Scientific World Journal 1: 6565–6680.

    Google Scholar 

  • Abelho, M. & M. A. S. Graça, 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324: 195–204.

    Google Scholar 

  • Allan, J. D. & M. M. Castillo, 2007. Stream ecology: structure and function of running waters. Springer, Dordrecht.

    Google Scholar 

  • Anderson, M. J., 2001. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 6265–6639.

    Google Scholar 

  • Anderson, N. H. & J. R. Sedell, 1979. Detritus processing by macroinvertebrates in stream ecosystems. Annual Review of Entomology 24: 351–377.

    Google Scholar 

  • Apha, A., 1995. Standard methods for the examination of water and watershed. American Public Health Association, Washington DC.

    Google Scholar 

  • Arsuffi, T. L. & K. Suberkropp, 1985. Selective feeding by stream caddisfly (Trichoptera) detritivores on leaves with fungal-colonized patches. Oikos 45: 50–58.

    Google Scholar 

  • Arsuffi, T. L. & K. Suberkropp, 1986. Growth of two stream caddisflies (Trichoptera) on leaves colonized by different fungal species. Journal of the North American Benthological Society 5: 297–305.

    Google Scholar 

  • Arsuffi, T. L. & K. Suberkropp, 1989. Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79: 30–37.

    CAS  PubMed  Google Scholar 

  • Artigas, J., A. M. Romaní & S. Sabater, 2008. Effect of nutrients on the sporulation and diversity of aquatic hyphomycetes on submerged substrata in a Mediterranean stream. Aquatic Botany 88: 32–38.

    CAS  Google Scholar 

  • Azevedo-Pereira, H. V. S., M. A. S. Graça & J. M. González, 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia 559: 183–192.

    Google Scholar 

  • Balibrea, A., V. Ferreira, V. Gonçalves & P. M. Raposeiro, 2017. Consumption, growth and survival of the endemic stream shredder Limnephilus atlanticus (Trichoptera, Limnephilidae) fed with distinct leaf species. Limnologica 64: 31–37.

    Google Scholar 

  • Bärlocher, F., 2005. Sporulation by aquatic hyphomycetes. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to Study Litter Decomposition: A Practical Guide. Springer, New York: 185–188.

    Google Scholar 

  • Bärlocher, F. & M. A. S. Graça, 2002. Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshwater Biology 47: 1123–1135.

    Google Scholar 

  • Bärlocher, F. & J. J. Oertli, 1978. Inhibitors of aquatic hyphomycetes in dead conifer needles. Mycologia 70: 964–974.

    Google Scholar 

  • Bärlocher, F. & K. R. Sridhar, 2014. Association of animals and fungi in leaf decomposition. In Jones, E. B. G., K. D. Hyde & K. L. Pang (eds), Freshwater Fungi. De Gruyter, Germany: 413–442.

    Google Scholar 

  • Benstead, J. P., J. G. March, C. M. Pringle, K. C. Ewel & J. W. Short, 2009. Biodiversity and ecosystem function in species-poor communities: community structure and leaf litter breakdown in a Pacific island stream. Journal of the North American Benthological Society 28: 454–465.

    Google Scholar 

  • Berger, F. & A. Aptroot, 2002. Further contributions to the flora of lichens and lichenicolous fungi of the Azores. Arquipélago. Life and Marine Sciences 19A: 1–12.

    Google Scholar 

  • Bilton, D. T., J. R. Freeland & B. Okamura, 2001. Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32: 159–181.

    Google Scholar 

  • Borges, P. A., E. B. Azevedo, A. E. S. D. Borba, F. Dinis, R. Gabriel & E. Silva, 2009. Ilhas Oceânicas. Portugal Millenium Ecosystem Assessment. Escolar Editora, Lisboa: 463–510.

    Google Scholar 

  • Borges, P. A., A. Costa, R. Cunha, R. Gabriel, V. Gonçalves, A. F. Martins, I. Melo, M. Parente, P. M. Raposeiro, P. Rodrigues & R. S. Santos, 2010. Listagem dos organismos terrestres e marinhos dos Açores. Princípia Editora, Lda., Cascais: 432.

    Google Scholar 

  • Botelho, R. & L. Peñil, 2013. Requalificação Ambiental das Turfeiras do Planalto dos Graminhais pelo projeto LIFE + Laurssilva Susténtavel – Ação C3, C5, E1. Sociedade Portuguesa para o Estudo das Aves, Lisboa.

    Google Scholar 

  • Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. S. Graça, D. Dudgeon, A. J. Boulton, M. Callisto, E. Chauvet, J. E. Helson, A. Bruder, R. J. Albariño, C. M. Yule, M. Arunachalam, J. N. Davies, R. Figueroa, A. S. Flecker, A. Ramírez, R. G. Death, T. Iwata, J. M. Mathooko, C. Mathuriau, J. F. Gonçalves, M. S. Moretti, T. Jingut, S. Lamothe, C. M’Erimba, L. Ratnarajah, M. H. Schindler, J. Castela, L. M. Buria, A. Cornejo, V. D. Villanueva & D. C. West, 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecology Letters 14: 289–294.

    PubMed  Google Scholar 

  • Callisto Jr., M., J. F. Gonçalves & M. A. S. Graça, 2007. Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Revista Brasileira de Zoologia 24: 442–448.

    Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshwater Biology 34: 209–214.

    Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333: 79–85.

    CAS  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microbial Ecology 37: 163–172.

    CAS  PubMed  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 2008. Interactions between fungi (aquatic hyphomycetes) and invertebrates. In Sridhar, K. R., F. Bärlocher & K. D. Hyde (eds), Novel Techniques and Ideas in Mycology. Fungal Diversity Research Series. University of Hong Kong, Hong Kong: 205–325.

    Google Scholar 

  • Carvalho, E. M. & M. A. S. Graça, 2007. A laboratory study on feeding plasticity of the shredder Sericostoma vittatum Rambur (Sericostomatidae). Hydrobiologia 575: 353–359.

    Google Scholar 

  • Chung, N. & K. Suberkropp, 2008. Influence of shredder feeding and nutrients on fungal activity and community structure in headwater streams. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173: 35–46.

    CAS  Google Scholar 

  • Chung, N. & K. Suberkropp, 2009. Effects of aquatic fungi on feeding preferences and bioenergetics of Pycnopsyche gentilis (Trichoptera: Limnephilidae). Hydrobiologia 630: 257–269.

    Google Scholar 

  • Claeson, S. M., C. J. LeRoy, J. R. Barry & K. A. Kuehn, 2013. Impacts of invasive riparian knotweed on litter decomposition, aquatic fungi, and macroinvertebrates. Biological Invasions 16: 1531–1544.

    Google Scholar 

  • Constância, J. M., 1963. Evolução da paisagem humanizada da Ilha de S. Miguel. Boletim do Centro de Estudos Geográficos 3: 5–60.

    Google Scholar 

  • Cornut, J., A. Elger, D. Lambrigot, P. Marmonier & E. Chauvet, 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshwater Biology 55: 2541–2556.

    Google Scholar 

  • Covich, A. P., 2009. Freshwater ecology. In Gillespie, R. G. & D. A. Clague (eds), Encyclopedia of Islands. University of California Press, Berkeley: 343–347.

    Google Scholar 

  • Crowl, T. A., W. H. McDowell, A. P. Covich & S. L. Johnson, 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82: 775–783.

    Google Scholar 

  • Cruz, J. & N. Soares, 2018. Groundwater governance in the Azores Archipelago (Portugal): valuing and protecting a strategic resource in small islands. Water 10: 408.

    Google Scholar 

  • Cummins, K. W., R. C. Petersen, F. O. Howard, J. C. Wuycheck & V. L. Holt, 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.

    Google Scholar 

  • Dang, C. K., M. Schindler, E. Chauvet & M. O. Gessner, 2009. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology 90: 122–131.

    PubMed  Google Scholar 

  • Dias, E., R. B. Elias, C. Melo & C. Mendes, 2007. Biologia e ecologia das florestas das ilhas-Açores. Açores e Madeira: A Floresta das Ilhas 6: 51–80.

    Google Scholar 

  • DROTH & INAG,2001. Plano Regional da Água. Relatório Técnico. Versão para Consulta Pública. Direcção Regional do Ordenamento do Território e dos Recursos Hídricos e Instituto da Água, Ponta Delgada.

  • Encalada, A. C., J. Calles, V. Ferreira, C. M. Canhoto & M. A. S. Graça, 2010. Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55: 1719–1733.

    Google Scholar 

  • Ferreira, V. & M. A. S. Graça, 2006. Do invertebrate activity and current velocity affect fungal assemblage structure in leaves? International Review of Hydrobiology 91: 1–14.

    CAS  Google Scholar 

  • Ferreira, V., V. Gulis & M. A. S. Graça, 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia 149: 718–729.

    PubMed  Google Scholar 

  • Ferreira, V., A. C. Encalada & M. A. S. Graça, 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31: 945–962.

    Google Scholar 

  • Ferreira, V., B. Castagneyrol, J. Koricheva, V. Gulis, E. Chauvet & M. A. S. Graça, 2015. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams. Biological Reviews 90: 669–688.

    PubMed  Google Scholar 

  • Ferreira, V., P. M. Raposeiro, A. Pereira, A. M. Cruz, A. C. Costa, M. A. S. Graça & V. Gonçalves, 2016. Leaf litter decomposition in remote oceanic island streams is driven by microbes and depends on litter quality and environmental conditions. Freshwater Biology 61: 783–799.

    CAS  Google Scholar 

  • Ferreira, V., H. Faustino, P. M. Raposeiro & V. Gonçalves, 2017. Replacement of native forests by conifer plantations affects fungal decomposer community structure but not litter decomposition in Atlantic island streams. Forest Ecology and Management 389: 323–330.

    Google Scholar 

  • Ferreira, V., L. Boyero, C. Calvo, F. Correa, R. Figueroa, J. F. Gonçalves, G. Goyenola, M. A. S. Graça, L. U. Hepp, S. Kariuki, A. Lopez-Rodriguez, N. Mazzeo, C. M’Erimba, A. Peil, J. Pozo, R. Rezende & F. Teixeira de Mello, 2019. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22: 629–642.

    Google Scholar 

  • Friberg, N. & D. Jacobsen, 1994. Feeding plasticity of two detritivore-shredders. Freshwater Biology 32: 133–142.

    Google Scholar 

  • Friberg, N. & D. Jacobsen, 1999. Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshwater Biology 42: 625–635.

    Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 75: 1807–1817.

    Google Scholar 

  • Girisha, G. K., L. M. Condron, P. W. Clinton & M. R. Davis, 2003. Decomposition and nutrient dynamics of green and freshly fallen radiata pine (Pinus radiata) needles. Forest Ecology and Management 179: 169–181.

    Google Scholar 

  • Goering, H. K. & P. J. Van Soest, 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Agricultural Handbook No. 379. ARS-USDA, Washington DC, USA.

  • Gonçalves, A. L., A. M. Gama, V. Ferreira, M. A. S. Graça & C. Canhoto, 2007. The breakdown of blue gum (Eucalyptus globulus Labill.) bark in a Portuguese stream. Fundamental and Applied Limnology/Archiv für Hydrobiologie 168: 307–315.

    Google Scholar 

  • Gonçalves, V., P. M. Raposeiro, H. Marques, J. Vilaverde, A. Balibrea, J. Camille-Riva, R. Luz & A. C. Costa, 2016. Monitorização das Massas de Água Interiores e de Transição da Região Hidrográfica dos Açores. Relatório Anual do 1º Ano (R5/1º Ano). CIBIO Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada: 86.

    Google Scholar 

  • Gonçalves, V., P. M. Raposeiro, H. Marques, J. Vilaverde, A. Balibrea, R. Luz & A. C. Costa, 2017. Monitorização das Massas de Água Interiores e de Transição da Região Hidrográfica dos Açores. Relatório da 1ª Campanha do Ano 2 (R1/Ano 2). CIBIO Açores, Departamento de Biologia, Universidade dos Açores, Ponta Delgada: 14.

    Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.

    Google Scholar 

  • Graça, M. A. S. & C. Canhoto, 2006. Leaf litter processing in low order streams. Limnetica 25: 001–010.

    Google Scholar 

  • Graça, M. A. S. & C. Cressa, 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. International Review of Hydrobiology 95: 27–41.

    Google Scholar 

  • Graça, M. A. S., F. Bärlocher & M. O. Gessner, 2005. Methods to study litter decomposition: a practical guide. Springer, New York.

    Google Scholar 

  • Gulis, V. & K. Suberkropp, 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology 48: 123–134.

    Google Scholar 

  • Gulis, V., L. Marvanová & E. Descals, 2005. An illustrated key to the common temperate species of aquatic hyphomycetes. Methods to Study Litter Decomposition. Springer, Dordrecht: 153–167.

    Google Scholar 

  • Gulis, V., V. Ferreira & M. A. S. Graça, 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwater Biology 51: 1655–1669.

    CAS  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.

    Google Scholar 

  • Hughes, S. J., 2003. A study of the freshwater macroinvertebrate fauna of Madeira and its application in a regional ecological assessment system (Doctoral dissertation). King’s College, University of London, London.

    Google Scholar 

  • Hughes, S. J., 2005. Application of the water framework directive to Macaronesian freshwater systems. In: Biology and Environment: Proceedings of the Royal Irish Academy: 185–193.

  • Hughes, S. J., 2006. Temporal and spatial distribution patterns of larval trichoptera in Madeiran streams. Hydrobiologia 553: 27–41.

    CAS  Google Scholar 

  • Kennedy, K. T. & R. W. El-Sabaawi, 2017. A global meta-analysis of exotic versus native leaf decay in stream ecosystems. Freshwater Biology 62: 977–989.

    CAS  Google Scholar 

  • Kriska, G., 2013. Freshwater Invertebrates in Central Europe: A Field Guide. Springer, Heidelberg, Berlin, New York.

    Google Scholar 

  • Larned, S. T., 2000. Dynamics of coarse riparian detritus in a Hawaiian stream ecosystem: a comparison of drought and post-drought conditions. Journal of the North American Benthological Society 19: 215–234.

    Google Scholar 

  • Larned, S. T., R. A. Kinzie, A. P. Covich & C. T. Chong, 2003. Detritus processing by endemic and non-native Hawaiian stream invertebrates: a microcosm study of species-specific effects. Archiv für Hydrobiologie 156: 241–254.

    Google Scholar 

  • Li, A. O. Y. & D. Dudgeon, 2009. Shredders: species richness, abundance, and role in litter breakdown in tropical Hong Kong streams. Journal of the North American Benthological Society 28: 167–180.

    Google Scholar 

  • Longo, M. & J. F. Blanco, 2014. Shredders are abundant and species-rich in tropical continental-island low-order streams: Gorgona Island, Tropical Eastern Pacific, Colombia. Revista de Biología Tropical 62: 85–105.

    Google Scholar 

  • Machado, A. L. F. B. & D. Gonçalves, 2004. Influência do habitat na distribuição da Galinhola (Scolopax rusticolà) na ilha de S. Miguel (Açores) durante a época de reprodução. Universidade do Porto, Porto.

    Google Scholar 

  • MacKenzie, R. A., T. N. Wiegner, F. Kinslow, N. Cormier & A. M. Strauch, 2013. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river. Freshwater Science 32: 1036–1052.

    Google Scholar 

  • Malmqvist, B., 2002. Aquatic invertebrates in riverine landscapes. Freshwater Biology 47: 679–694.

    Google Scholar 

  • Martínez, A., A. Larrañaga, J. Pérez, E. Descals, A. Basaguren & J. Pozo, 2013. Effects of pine plantations on structural and functional attributes of forested streams. Forest Ecology and Management 310: 147–155.

    Google Scholar 

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Google Scholar 

  • Pascoal, C., L. Marvanová & F. Cássio, 2005. Aquatic hyphomycete diversity in streams of Northwest Portugal. Fungal Diversity 19: 109–128.

    Google Scholar 

  • Pereira, A. P., M. A. S. Graca & M. Molles, 1998. Leaf litter decomposition in relation to litter physico-chemical properties, fungal biomass, arthropod colonization, and geographical origin of plant species. Pedobiologia 42: 316–327.

    Google Scholar 

  • Pozo, J., J. Casas, M. Menéndez, S. Mollá, I. Arostegui, A. Basaguren, C. Casado, E. Descals, J. García-Avilés, J. M. González & A. Larrañaga, 2011. Leaf-litter decomposition in headwater streams: a comparison of the process among four climatic regions. Journal of the North American Benthological Society 30: 935–950.

    Google Scholar 

  • Pringle, C. M., G. A. Blake, A. P. Covich, K. M. Buzby & A. Finley, 1993. Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia 93: 1–11.

    PubMed  Google Scholar 

  • Raposeiro, P. M., A. C. Costa & S. J. Hughes, 2011. Environmental factors–spatial and temporal variation of chironomid communities in oceanic island streams (Azores archipelago). EDP Sciences. Annales de Limnologie-International Journal of Limnology 47: 325–338.

    Google Scholar 

  • Raposeiro, P. M., M. A. Cruz, S. J. Hughes & A. C. Costa, 2012. Azorean freshwater invertebrates: status, threats and biogeographic notes. Limnetica 31(1): 0013–0022.

    Google Scholar 

  • Raposeiro, P. M., S. J. Hughes & A. C. Costa, 2013. Environmental drivers – spatial and temporal variation of macroinvertebrate communities in island streams: the case of the Azores Archipelago. Fundamental and Applied Limnology/Archiv für Hydrobiologie 182: 337–350.

    Google Scholar 

  • Raposeiro, P. M., G. M. Martins, I. Moniz, A. Cunha, A. C. Costa & V. Gonçalves, 2014. Leaf litter decomposition in remote oceanic islands: the role of macroinvertebrates vs. microbial decomposition of native vs. exotic plant species. Limnologica 45: 80–87.

    Google Scholar 

  • Raposeiro, P. M., V. Ferreira, G. Gea & V. Gonçalves, 2018. Contribution of aquatic shredders to leaf litter decomposition in Atlantic island streams depends on shredder density and litter quality. Marine and Freshwater Research 69: 1432–1439.

    Google Scholar 

  • Rincón, J. & A. P. Covich, 2014. Effects of insect and decapod exclusion and leaf litter species identity on breakdown rates in a tropical headwater stream. Revista de Biología Tropical 62: 143–154.

    PubMed  Google Scholar 

  • Rosa, J. S., C. Mascarenhas, L. Oliveira, T. Teixeira, M. C. Barreto & J. Medeiros, 2010. Biological activity of essential oils from seven Azorean plants against Pseudaletia unipuncta (Lepidoptera: Noctuidae). Journal of Applied Entomology 134: 346–354.

    CAS  Google Scholar 

  • Santos, F. D., M. A. Valente, P. M. A. Miranda, A. Aguiar, E. B. Azevedo, A. R. Tomé & F. Coelho, 2004. Climate change scenarios in the Azores and Madeira islands. World Resource Review 16: 473–491.

    Google Scholar 

  • Schmidt-Kloiber, A. & D. Hering, 2012. The taxa and autecology database for freshwater organisms, version 5.0. https://www.freshwaterecology.info. Accessed October 2017.

  • Seena, A., F. Bärlocher, O. Sobral, M. O. Gessner, D. Dudgeon, B. G. Mckie, E. Chauvet, L. Boyero, V. Ferreira, A. Frainer, A. Bruder, C. D. Matthaei, S. Fenoglio, K. R. Sridhar, R. J. Albariño, M. Douglas, A. C. Encalada, E. Garcia, S. D. Ghate, D. P. Giling, V. Gonçalves, T. Iwata, A. Landeira-Dabarca, D. McMaster, A. O. Medeiros, J. Naggea, J. Pozo, P. M. Raposeiro, C. M. Swan, N. S. D. Tenkiano, C. M. Yule & M. A. S. Graça, 2019. Biodiversity of leaf litter fungi in streams along a latitudinal gradient. Science of the Total Environment 661: 306–315.

    CAS  PubMed  Google Scholar 

  • Silva, L. & C. W. Smith, 2004. A characterization of the non-indigenous flora of the Azores Archipelago. Biological Invasions 6: 193–204.

    Google Scholar 

  • Skalar, 2004. The San Plus Continuous Flow Analyzer E User Manual: Section 8 e Operating the SFA Analyzer. Skalar Analytical BV, Breda.

    Google Scholar 

  • Smith, G. C., A. P. Covich & A. M. Brasher, 2003. An ecological perspective on the biodiversity of tropical island streams. AIBS Bulletin 53: 1048–1051.

    Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union 38: 913–920.

    Google Scholar 

  • Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2000. Invertébrés d’eau douce: Systématique, Biologie, Écologie. CNRS éditions, Paris.

    Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    CAS  Google Scholar 

  • Whittaker, R. J. & J. M. Fernández-Palacios, 2007. Island Biogeography: Ecology, Evolution, and Conservation. Oxford University Press, Oxford.

    Google Scholar 

  • Wright, M. S. & A. P. Covich, 2005. The effect of macroinvertebrate exclusion on leaf breakdown rates in a tropical headwater stream 1. Biotropica 37: 403–408.

    Google Scholar 

  • Yeung, A. C., D. P. Kreutzweiser & J. S. Richardson, 2019. Stronger effects of litter origin on the processing of conifer than broadleaf leaves: a test of home-field advantage of stream litter breakdown. Freshwater Biology 64: 1755–1768.

    Google Scholar 

Download references

Acknowledgements

This work was funded by FEDER—European Fund for Regional Development through the COMPETE—Operational Programme for Competitiveness Factors and by national funds through FCT—Foundation for Science and Technology under the UID/BIA/50027/2013 and POCI-01-0145-FEDER-006821. VF and PMR acknowledge the financial support from the FCT (IF/00129/2014 and SFRH/BPD/99461/2014, respectively). We thank the Freshwater Ecology Group from the University of the Azores for all the help in the field and the anonymous reviewers for their comments on an earlier version of the manuscript. The field surveys comply with the current laws of Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Balibrea.

Additional information

Handling editor: Checo Colón-Gaud.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balibrea, A., Ferreira, V., Balibrea, C. et al. Contribution of macroinvertebrate shredders and aquatic hyphomycetes to litter decomposition in remote insular streams. Hydrobiologia 847, 2337–2355 (2020). https://doi.org/10.1007/s10750-020-04259-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04259-1

Keywords

Navigation