Skip to main content

Advertisement

Log in

Effectiveness of catchment erosion protection measures and scale-dependent response of stream biota

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many rivers in Central Europe are heavily affected by increased sedimentation due to erosion from agricultural land. High fine sediment loads can clog the interstitial system, increase turbidity, limit light penetration and potentially reduce primary productivity with negative impacts on stream biota such as reduced abundance and diversity. In this study, the effects of different erosion protection measures on instream sedimentation and the communities of fishes, macroinvertebrates and periphyton were evaluated. The erosion protection measures in the catchment successfully reduced the fine-sediment and nutrient input into the river system resulting in positive effects on interstitial habitat quality and the species assemblage of the assessed biota. The single taxonomic groups differed in their response both to catchment-related and instream-related variables. Fish community composition was best explained by catchment-scale variables, while periphyton and macroinvertebrate assemblage structure was significantly governed by instream-scale variables. For increasing restoration success, a combination of measures in the catchment area with structure-enhancing measures within the stream is necessary. The results also suggest that an integrative assessment of abiotic and biotic variables in monitoring increases the detectability of effects on the instream scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acornley, R. M. & D. A. Sear, 1999. Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams. Hydrological Processes 13: 447–458.

    Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods, 1st ed. PRIMER-E Ltd., Plymouth, UK.

    Google Scholar 

  • Angermeier, P. L. & J. R. Karr, 1984. Relationships between woody debris and fish habitat in a small warm water stream. Transactions of the American Fisheries Society 113: 716–726.

    Google Scholar 

  • Auerswald, K., P. Fiener & R. Dikau, 2009. Rates of sheet and rill erosion in Germany – A meta-analysis. Geomorphology 111: 182–193.

    Google Scholar 

  • Auerswald, K. & J. Geist, 2018. Extent and causes of siltation in a headwater stream bed: catchment soil erosion is less important than internal stream processes. Land Degradation and Development 29: 737–748.

    Google Scholar 

  • Balon, E. K., 1975. Reproductive guilds of fishes: a proposal and definition. Journal of the Fisheries Board of Canada 32: 821–864.

    Google Scholar 

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Google Scholar 

  • Belsley, D. A., E. Kuh & R. E. Welsch, 2005. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Vol. 571. Wiley, New York.

    Google Scholar 

  • Bernhardt, E. S. & M. A. Palmer, 2011. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecological Applications 21: 1926–1931.

    PubMed  Google Scholar 

  • Biggs, B. J. F., 2000. New Zealand Periphyton Guideline. Detecting, Monitoring and Managing Enrichment of Streams. NIWA, Christchurch.

    Google Scholar 

  • Bonada, N., M. Rieradevall & N. Prat, 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106.

    Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Google Scholar 

  • Bretschko, G., 1995. The ecological importance of streambed sediments, regardless of whether or not they are inundated. Folia Facultatis Scientarium Naturalium Universitatis Masarykianae Brunensis, Biologia 91: 5–17.

    Google Scholar 

  • Bruton, M. N., 1985. The effects of suspensoids on fish. Hydrobiologia 125: 221–241.

    Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    PubMed  Google Scholar 

  • Cerdan, O., G. Govers, Y. Le Bissonnais, K. Van Oost, J. Poesen, N. Saby, A. Gobin, A. Vacca, J. Quinton, K. Auerswald, A. Klik, F. J. P. M. Kwaad, D. Raclot, I. Ionita, J. Rejman, S. Rousseva, T. Muxart, M. J. Roxo & T. Dostal, 2010. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122: 167–177.

    Google Scholar 

  • Chapman, D. W., 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society 117: 1–21.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial, 2nd ed. PRIMER-E, Plymouth, UK.

    Google Scholar 

  • Cleveland, W. S. & S. J. Devlin, 1988. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83: 596–610.

    Google Scholar 

  • Cline, L. D., R. A. Short & J. V. Ward, 1982. The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream. Hydrobiologia 96: 149–159.

    Google Scholar 

  • Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack & J. L. Sabo, 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719: 383–425.

    CAS  Google Scholar 

  • Crawford, R. M., 1975. The taxonomy and classification of the diatom genus Melosira C.Ag. I. The type species M. nummuloides C.Ag. British Phycological Journal 10: 323–338.

    Google Scholar 

  • Culp, J. M., F. J. Wrona & R. W. Davies, 1986. Response of stream benthos and drift to fine sediment deposition versus transport. Canadian Journal of Zoology 64: 1345–1351.

    Google Scholar 

  • Davies, B., J. Biggs, P. Williams & S. Thompson, 2009. Making agricultural landscapes more sustainable for freshwater biodiversity: a case study from southern England. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 439–447.

    Google Scholar 

  • Davies-Colley, R. J., C. W. Hickey, J. M. Quinn & P. A. Ryan, 1992. Effects of clay discharges on streams. Hydrobiologia 248: 215–234.

    Google Scholar 

  • Denic, M. & J. Geist, 2015. Linking stream sediment deposition and aquatic habitat quality in pearl mussel streams: implications for conservation. River Research and Applications 31: 943–952.

    Google Scholar 

  • Denic, M., K. Stoeckl, B. Gum & J. Geist, 2014. Physicochemical assessment of Unio crassus habitat quality in a small upland stream and implications for conservation. Hydrobiologia 735: 111–122.

    CAS  Google Scholar 

  • Dickman, M. D., M. R. Peart & W. Wai-Shu Yim, 2005. Benthic diatoms as indicators of stream sediment concentration in Hong Kong. International Review of Hydrobiology 90: 412–421.

    Google Scholar 

  • Diggle, P. J., P. J. Heagerty, K. Y. Liang & S. L. Zeger, 2002. Analysis of Longitudinal Data, 2nd ed. Oxford University Press, Oxford, England.

    Google Scholar 

  • Din EN 1899–2, 1998. Water Quality – Determination of Biochemical Oxygen Demand After n Days (BODn) – Part 2: Method for Undiluted Samples. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN 14011, 2003. Water Quality – Sampling of Fish with Electricity. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN 15204, 2006. Water Quality – Guidance Standard on the Enumeration of Phytoplankton Using Inverted Microscopy (Utermöhl technique). Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • DIN EN ISO 10870, 2012. Water Quality – Guidelines for the Selection of Sampling Methods and Devices for Benthic Macroinvertebrates in Fresh Waters. Beuth Verlag, Berlin, Germany.

    Google Scholar 

  • Doeg, T. J. & J. D. Koehn, 1994. Effects of draining and desilting a small weir on downstream fish and macroinvertebrates. River Research and Applications 9: 263–277.

    Google Scholar 

  • Duerregger, A., J. Pander, M. Palt, M. Mueller, C. Nagel & J. Geist, 2018. The importance of stream interstitial conditions for the early life stage development of the European nase (Chondrostoma nasus L.). Ecology of Freshwater Fish 27: 920–932.

    Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks CA.

    Google Scholar 

  • Geist, J. & K. Auerswald, 2007. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshwater Biology 52: 2299–2316.

    Google Scholar 

  • Geist, J., 2011. Integrative freshwater ecology and biodiversity conservation. Ecological Indicators 11: 1507–1516.

    Google Scholar 

  • Graham, A. A., 1990. Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.

    Google Scholar 

  • Gray, L. J. & J. V. Ward, 1982. Effects of sediment releases from a reservoir on stream macroinvertebrates. Hydrobiologia 96: 177–184.

    Google Scholar 

  • Griffiths, N. A., J. L. Tank, T. V. Royer, E. J. Rosi-Marshall, M. R. Whiles, C. P. Chambers, T. C. Frauendorf & M. A. Evans-White, 2009. Rapid decomposition of maize detritus in agricultural headwater streams. Ecological Applications 19: 133–142.

    PubMed  Google Scholar 

  • Grossman, G. D., A. D. Sostoa, M. C. Freeman & J. Lobón-Cerviá, 1987. Microhabitat use in a mediterranean riverine fish assemblage. Oecologia 73: 501–512.

    CAS  PubMed  Google Scholar 

  • Hauer, F. R. & G. A. Lamberti, 2007. Methods in Stream Ecology, 2nd ed. Elsevier, Oxford.

    Google Scholar 

  • Henley, W. F., M. A. Patterson, R. J. Neves & A. D. Lemly, 2000. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science 8: 125–139.

    Google Scholar 

  • Jones, J. I., C. P. Duerdoth, A. L. Collins, P. S. Naden & D. A. Sear, 2014. Interactions between diatoms and fine sediment. Hydrological Processes 28: 1226–1237.

    Google Scholar 

  • Kemp, P., D. Sear, A. Collins, P. Naden & I. Jones, 2011. The impacts of fine sediment on riverine fish. Hydrological Processes 25: 1800–1821.

    Google Scholar 

  • Kondolf, G. M., 2000. Assessing salmonid spawning gravel quality. Transactions of the American Fisheries Society 129: 262–281.

    Google Scholar 

  • Kottelat, M. & J. Freyhof, 2007. Handbook of European Freshwater Fishes. Publications Kottelat, Cornol and Freyhof, Berlin.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lemly, A. D., 1982. Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment. Hydrobiologia 87: 229–245.

    Google Scholar 

  • Lorenz, A. W., S. C. Jähnig & D. Hering, 2009. Re-meandering German lowland streams: qualitative and quantitative effects of restoration measures on hydromorphology and macroinvertebrates. Environmental Management 44: 745–754.

    PubMed  Google Scholar 

  • Meier, C., P. Haase, P. Rolauffs, K. Schindehütte, F. Schöll, A. Sundermann & D. Hering, 2006. Methodisches Handbuch Fließgewässerbewertung. Handbuch zur Untersuchung und Bewertung von Fließgewässern auf der Basis des Makrozoobenthos vor dem Hintergrund der EG-Wasserrahmenrichtlinie.

  • Moring, J. R., 1982. Decrease in stream gravel permeability after clear-cut logging: an indication of intragravel conditions for developing salmonid eggs and alevins. Hydrobiologia 88: 295–298.

    Google Scholar 

  • Mueller, M., J. Pander & J. Geist, 2011. The effects of weirs on structural stream habitat and biological communities. Journal of Applied Ecology 48: 1450–1461.

    Google Scholar 

  • Mueller, M., J. Pander, R. Wild, T. Lueders & J. Geist, 2013. The effects of stream substratum texture on interstitial conditions and bacterial biofilms: Methodological strategies. Limnologica 43: 106–113.

    Google Scholar 

  • Mueller, M., J. Pander & J. Geist, 2014a. The ecological value of stream restoration measures: an evaluation on ecosystem and target species scale. Ecological Engineering 62: 129–139.

    Google Scholar 

  • Mueller, M., J. Pander & J. Geist, 2014b. A new tool for assessment and monitoring of community and ecosystem change based on multivariate abundance data integration from different taxonomic groups. Environmental Systems Research 3: 1–9.

    Google Scholar 

  • Müllner, A. N. & M. Schagerl, 2003. Abundance and vertical distribution of the phytobenthic community within a pool and riffle sequence of an Alpine gravel stream. International Review of Hydrobiology 88: 243–254.

    Google Scholar 

  • O’brien, R. M., 2007. A caution regarding rules of thumb for variance inflation factors. Quality & Quantity 41: 673–690.

    Google Scholar 

  • Ometo, J. P. H., L. A. Martinelli, M. V. Ballester, A. Gessner, A. V. Krusche, R. L. Victoria & M. Williams, 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, south-east Brazil. Freshwater Biology 44: 327–337.

    CAS  Google Scholar 

  • Pander, J., M. Mueller & J. Geist, 2015a. A comparison of four stream substratum restoration techniques concerning interstitial conditions and downstream effects. River Research and Applications 31: 239–255.

    Google Scholar 

  • Pander, J., M. Mueller & J. Geist, 2015b. Succession of fish diversity after reconnecting a large floodplain to the upper Danube River. Ecological Engineering 75: 41–50.

    Google Scholar 

  • Peckarsky, B. L., 1985. Do predaceous stoneflies and siltation affect the structure of stream insect communities colonizing enclosures? Canadian Journal of Zoology 63: 1519–1530.

    Google Scholar 

  • Pimentel, D., C. Harvey, P. Resosudarmo, K. Sinclair, D. Kurz, M. McNair, S. Crist, L. Shpritz, L. Fitton, R. Saffouri & R. Blair, 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267: 1117–1123.

    CAS  PubMed  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737.

    CAS  Google Scholar 

  • R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed on 20 November 2018).

  • Regh, K. J., A. I. Packman & J. Ren, 2005. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrological Processes 19: 413–427.

    Google Scholar 

  • Rempel, L. L., J. S. Richardson & M. C. Healey, 2000. Macroinvertebrate community structure along gradients of hydraulic and sedimentary conditions in a large gravel-bed river. Freshwater Biology 45: 57–73.

    Google Scholar 

  • Roni, P., T. J. Beechie, R. E. Bilby, F. E. Leonetti, M. M. Pollock & G. R. Pess, 2002. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. North American Journal of Fisheries Management 22: 1–20.

    Google Scholar 

  • Rosenberg, D. M. & A. P. Wiens, 1978. Effects of sediment addition on macrobenthic invertebrates in a northern Canadian river. Water Research 12: 753–763.

    Google Scholar 

  • Roth, N. E., J. D. Allan & D. L. Erickson, 1996. Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology 11: 141–156.

    Google Scholar 

  • Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Smol, J. P. & E. F. Stoermer, 2010. The Diatoms. Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Soulsby, C., A. Youngson, H. Moir & I. Malcolm, 2001. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Science of the Total Environment 265: 295–307.

    CAS  PubMed  Google Scholar 

  • Spaulding, S. A., D. J. Lubinski & M. Potapova, 2010. Diatoms of the United States. http://westerndiatoms.colorado.edu (accessed on 9 December 2016).

  • Sternecker, K., R. Wild & J. Geist, 2013. Effects of substratum restoration on salmonid habitat quality in a subalpine stream. Environmental Biology of Fishes 96: 1341–1351.

    Google Scholar 

  • Sternecker, K., M. Denic & J. Geist, 2014. Timing matters: species-specific interactions between spawning time, substrate quality, and recruitment success in three salmonid species. Ecology and Evolution 4: 2749–2758.

    PubMed  PubMed Central  Google Scholar 

  • Townsend, C. R., C. Arbuckle, T. Crowl & M. Scarsbrook, 1997. The relationship between land use and physicochemistry, food resources and macroinvertebrate communities in tributaries of the Taieri River, New Zealand: a hierarchically scaled approach. Freshwater Biology 37: 177–191.

    Google Scholar 

  • Van Nieuwenhuyse, E. E. & J. D. LaPerriere, 1986. Effects of placer gold mining on primary production in subarctic streams of Alaska. Water Resources Bulletin 22: 91–99.

    Google Scholar 

  • Walser, C. A. & H. L. Bart, 1999. Influence of agriculture on in-stream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River System. Ecology of Freshwater Fish 8: 237–246.

    Google Scholar 

  • Weijters, M. J., J. H. Janse, R. Alkemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112.

    Google Scholar 

  • Wilson, H. F. & M. A. Xenopoulos, 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience 2: 37–41.

    CAS  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.

    CAS  PubMed  Google Scholar 

  • Yamada, H. & F. Nakamura, 2002. Effect of fine sediment deposition and channel works on periphyton biomass in the Makomanai River, Northern Japan. River Research and Applications 18: 481–493.

    Google Scholar 

  • Zauner, G. & J. Eberstaller, 1999. Klassifizierungsschema der österreichischen Flußfischfauna in Bezug auf deren Lebensraumansprüche. Österreichs Fischerei 52: 198–205.

    Google Scholar 

  • Zuur, A. F., E. N. Ineo, N. J. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer Science and Business Media, New York, USA.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Wasserwirtschaftsamt Deggendorf for financial support of this study and to Fischereifachberatung Niederbayern for their support during the electro-fishing surveys. We are also grateful to P. Strohmeier and the Bayerische Landesanstalt für Landwirtschaft for providing land use data. We would like to thank all volunteers for supporting the field samplings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Geist.

Additional information

Handling editor: Marcelo S. Moretti

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knott, J., Mueller, M., Pander, J. et al. Effectiveness of catchment erosion protection measures and scale-dependent response of stream biota. Hydrobiologia 830, 77–92 (2019). https://doi.org/10.1007/s10750-018-3856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3856-9

Keywords

Navigation