Skip to main content
Log in

Stream power as a predictor of aquatic macroinvertebrate assemblages in the Yarlung Tsangpo River Basin (Tibetan Plateau)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Assemblage structures and distribution patterns of aquatic macroinvertebrates are influenced by riverine environmental variables. The relationship between environmental variables and macroinvertebrate assemblages, however, has rarely been examined quantitatively for rivers with high stream power at high altitude. In this study, stream power was analyzed in relation to macroinvertebrate distributions in the Yarlung Tsangpo River Basin on the Tibetan Plateau. Field investigations were carried out at 22 sites in April, 2014 and 2015. Stream power, substrate size and evenness, discharge, bedload transport, and organic detritus availability varied greatly among these sites. In total, 125 taxa of macroinvertebrates belonging to 48 families and 104 genera were identified. The macroinvertebrate density was negatively and significantly correlated with the stream power (D = 3.30, P < 0.001). Both the assemblage indices (taxa richness, density, biomass, and the Improved Shannon–Wiener Index) and the environmental variables (elevation, substrate size, and discharge) differed among the sites with different levels of stream power. An adaptability analysis showed contrasting adaptive strengths of typical taxa. Orthocladius, Baetis, and Simulium adapted to wide ranges of stream power and their most optimal stream powers were relatively high, while Bethbilbeckia and Natarsia were only well-adapted to fairly narrow ranges in stream power. Some macroinvertebrates have evolved specific strategies to adapt to high stream power: Baetidae and Heptageniidae have developed specialized body shapes, and Epoicocladius has altered its host preference. The stream power has been shown to be significantly correlated with and could be used to predict macroinvertebrate density in the Yarlung Tsangpo River Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Bagnold, R. A., 1966. An Approach to the Sediment Transport Problem. General Physics Geological Survey, Professional Paper. United States Government Printing Office, Washington DC.

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. United States Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Bazzanti, M., V. Della Bella & F. Grezzi, 2009. Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): influence of water permanence and mesohabitat type. International Journal of Limnology 45: 29–39.

    Article  Google Scholar 

  • Beauger, A., N. Lair, P. Reyes-Marchant & J. L. Peiry, 2006. The distribution of macroinvertebrate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia 571: 63–76.

    Article  Google Scholar 

  • Beisel, J. N., P. Usseglio-Polatera, S. Thomas & J. C. Moreteau, 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389: 73–88.

    Article  Google Scholar 

  • Beisel, J. N., P. Usseglio-Polatera & J. C. Moreteau, 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrate communities. Hydrobiologia 422: 163–171.

    Article  Google Scholar 

  • Bouckaert, F. W., 1998. Microflow regimes and the distribution of macroinvertebrates around stream boulders. Freshwater Biology 40: 77–86.

    Article  Google Scholar 

  • Brosse, S., C. J. Arbuckle & C. R. Townsend, 2003. Habitat scale and biodiversity: influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodiversity and Conservation 12: 2057–2075.

    Article  Google Scholar 

  • Brussock, P. P. & A. V. Brown, 1991. Riffle-pool geomorphology disrupts longitudinal patterns of stream benthos. Hydrobiologia 220: 109–117.

    Article  Google Scholar 

  • Bunte, K. & S. R. Abt, 2001. Sampling surface and subsurface particlesize distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics and streambed monitoring. General Technical Report RMRS-GTR-74, United States Department of Agriculture, Fort Collins, Colorado.

  • Buss, D. F., D. F. Baptista, J. L. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Cobb, D. G., T. D. Galloway & J. F. Flannagan, 1992. Effects of discharge and substrate stability on density and species composition of stream insects. Canadian Journal of Fisheries and Aquatic Sciences 49: 1788–1795.

    Article  Google Scholar 

  • Connolly, N. M., R. G. Pearson & B. A. Pearson, 2016. Riparian vegetation and sediment gradients determine invertebrate diversity in streams draining an agricultural landscape. Agriculture, Ecosystems and Environment 221: 163–173.

    Article  Google Scholar 

  • Cummins, K. W. & G. H. Lauff, 1969. The influence of substrate particle size on the microdistribution of stream macrobenthos. Hydrobiologia 34: 145–181.

    Article  Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Davies, P. E., L. S. J. Cook, P. D. McIntosh & S. A. Munks, 2005. Changes in stream biota along a gradient of logging disturbance, 15 years after logging at Ben Nevis, Tasmania. Forest Ecology and Management 219: 132–148.

    Article  Google Scholar 

  • Doeg, T. J. & G. A. Milledge, 1991. Effect of experimentally increasing concentration of suspended sediment on macroinvertebrate drift. Marine and Freshwater Research 42: 519–526.

    Article  Google Scholar 

  • Downes, B. J., P. S. Lake, E. S. G. Schreiber & A. Glaister, 2000. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia 123: 569–581.

    Article  CAS  PubMed  Google Scholar 

  • Doyle, M. W., D. Shields, K. F. Boyd, P. B. Skidmore & D. Dominick, 2007. Channel-forming discharge selection in river restoration design. Journal of Hydraulic Engineering 133: 831–837.

    Article  Google Scholar 

  • Duan, X. H., Z. Y. Wang, M. Z. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.

    Article  Google Scholar 

  • Epler, J. H., 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina: a guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SH2001-SP13. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.

  • Flecker, A. S. & J. D. Allan, 1984. The importance of predation, substrate and spatial refugia in determining lotic insect distributions. Oecologia 64: 306–313.

    Article  PubMed  Google Scholar 

  • Füreder, L., C. Schütz, M. Wallinger & R. Burger, 2001. Physico-chemistry and aquatic insects of a glacier-fed and a spring-fed alpine stream. Freshwater Biology 46: 1673–1690.

    Article  Google Scholar 

  • García, P. E. & D. A. A. Suárez, 2007. Community structure and phenology of chironomids (Insecta: Chironomidae) in a Patagonian Andean stream. Limnologica-Ecology and Management of Inland Waters 37: 109–117.

    Article  Google Scholar 

  • Haden, G. A., J. P. Shannon, K. P. Wilson & D. W. Blinn, 2003. Benthic community structure of the Green and Colorado rivers through Canyonlands National Park, Utah, USA. The Southwestern Naturalist 48: 23–35.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontolia Electronica 4: 9.

    Google Scholar 

  • Huang, Y., P. Yuan & Z. H. Yan, 2010. Analysis on characteristics and laws of Yarlung Zangbo River Basin’s natural runoff. Hongshui River 29: 65–69. (in Chinese).

    Google Scholar 

  • Kerans, B. L. & J. R. Karr, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications 4: 768–785.

    Article  Google Scholar 

  • Khamis, K., D. M. Hannah, L. E. Brown, R. Tiberti & A. M. Milner, 2014. The use of invertebrates as indicators of environmental change in alpine rivers and lakes. Science of the Total Environment 493: 1242–1254.

    Article  CAS  PubMed  Google Scholar 

  • Lane, E. W., 1955. Importance of fluvial morphology in hydraulic engineering. Proceedings of American Society of Civil Engineers 81: 1–17.

    Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York.

    Google Scholar 

  • Limpert, E., W. A. Stahel & M. Abbt, 2001. Log-normal distributions across the sciences: keys and clues. BioScience 51: 341–352.

    Article  Google Scholar 

  • Liu, T. C., 1999. Hydrological Characteristics of Yalungzangbo River. Acta Geographica Sinica 54: 157–164. (in Chinese).

    Google Scholar 

  • Matthaei, C. D., C. Guggelberger & H. Huber, 2003. Local disturbance history affects patchiness of benthic river algae. Freshwater Biology 48: 1514–1526.

    Article  Google Scholar 

  • Moore, I. D. & G. J. Burch, 1986. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research 22: 1350–1360.

    Article  Google Scholar 

  • Morse, J. C., L. F. Yang & L. X. Tian, 1994. Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, Nanjing.

    Google Scholar 

  • Mutsunori, T., 1986. Population ecology of the commensal chironomid Epoicocladius flavens on its mayfly host Ephemera danica. Freshwater Biology 16: 235–243.

    Article  Google Scholar 

  • Mutsunori, T., 1993. On the evolution of commensalism in the Chironomidae. Freshwater Biology 29: 481–489.

    Article  Google Scholar 

  • Naden, P. S., J. F. Murphy, G. H. Old, J. Newman, P. Scarlett, M. Harman, C. P. Duerdoth, A. Hawczak, J. L. Pretty, A. Arnold, C. Laizé, D. D. Hornby, A. L. Collins, D. A. Sear & J. I. Jones, 2016. Understanding the controls on deposited fine sediment in the streams of agricultural catchments. Science of the Total Environment 547: 366–381.

    Article  CAS  PubMed  Google Scholar 

  • Nislow, K. H., F. J. Magilligan, C. L. Folt & B. P. Kennedy, 2002. Within-basin variation in the short-term effects of a major flood on stream fishes and invertebrates. Journal of Freshwater Ecology 17: 305–318.

    Article  Google Scholar 

  • Olden, J. D., N. L. Poff & B. P. Bledsoe, 2006. Incorporating ecological knowledge into ecoinformatics: an example of modeling hierarchically structured aquatic communities with neural networks. Ecological Informatics 1: 33–42.

    Article  Google Scholar 

  • Pan, B., Z. Y. Wang, Z. W. Li, G. Yu, M. Xu, N. Zhao & G. Brierley, 2013. An exploratory analysis of benthic macroinvertebrates as indicators of the ecological status of the Upper Yellow and Yangtze Rivers. Journal of Geographical Sciences 23: 871–882.

    Article  Google Scholar 

  • Rice, S. P., M. T. Greenwood & C. B. Joyce, 2001. Tributaries, sediment sources, and the longitudinal organisation of macroinvertebrate fauna along river systems. Canadian Journal of Fisheries and Aquatic Sciences 58: 824–840.

    Article  Google Scholar 

  • Roberts, D. M. & B. C. Okafor, 1987. Microdistribution of immature African blackflies resulting from water velocity and turbulence preferences. Medical and Veterinary Entomology 1: 169–175.

    Article  CAS  PubMed  Google Scholar 

  • Scrimgeour, G. J. & M. J. Winterbourn, 1989. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171: 33–44.

    Article  Google Scholar 

  • Slocum, T. A., R. McMaster, F. Kessler & H. H. Howard, 2009. Thematic Cartography and Geovisualization, 2nd ed. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Smith, B. J., P. E. Davies & S. A. Munks, 2009. Changes in benthic macroinvertebrate communities in upper catchment streams across a gradient of catchment forest operation history. Forest Ecology and Management 257: 2166–2174.

    Article  Google Scholar 

  • Statzner, B. & T. F. Holm, 1989. Morphological adaptation of shape to flow: microcurrents around lotic macroinvertebrates with known Reynolds numbers at quasi-natural flow conditions. Oecologia 78: 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Taghon, G. L., 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52: 295–304.

    Article  PubMed  Google Scholar 

  • Thorp, J. H. & A. P. Covich, 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York.

    Google Scholar 

  • Townsend, C. R., S. Dolédec, R. Norris, K. Peacock & C. Arbuckle, 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768–785.

    Article  Google Scholar 

  • Trask, P. D., 1933. Origin and environment of source sediments. Tulsa Geological Society Digest 2: 24–30.

    Google Scholar 

  • Vallania, A. & M. D. C. Corigliano, 2007. The effect of regulation caused by a dam on the distribution of the functional feeding groups of the benthos in the sub basin of the Grande River (San Luis, Argentina). Environmental Monitoring and Assessment 124: 201–209.

    Article  PubMed  Google Scholar 

  • Van Sickle, J., J. Baker, A. Herlihy, P. Bayley, S. Gregory, P. Haggerty, L. Ashkenas & J. Li, 2004. Projecting the biological condition of streams under alternative scenarios of human land use. Ecological Applications 14: 368–380.

    Article  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Wang, S. B., 2003. A question on the traditional biodiversity index. Journal of Fudan University (Natural Science) 42: 867–868. (in Chinese).

    Google Scholar 

  • Wang, J. C. & X. H. Wang, 2011. The Chironomid Larvae in North China. China Yanshi Press, Beijing. (in Chinese).

    Google Scholar 

  • Wang, Z. Y., J. H. W. Lee & C. S. Melching, 2015. River Dynamics and Integrated River Management. Springer, Berlin.

    Book  Google Scholar 

  • Wetzel, R. G., 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    Article  CAS  Google Scholar 

  • Whipple, K. X. & G. E. Tucker, 1999. Dynamics of the stream power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth 104: 17661–17674.

    Article  Google Scholar 

  • Wright, J. F., R. J. M. Gunn, J. M. Winder, R. Wiggers, K. Vowles, R. T. Clarke & I. Harris, 2002. A comparison of the macrophyte cover and macroinvertebrate fauna at three sites on the River Kennet in the mid 1970s and late 1990s. Science of the Total Environment 282: 121–142.

    Article  PubMed  Google Scholar 

  • Xu, M. Z., Z. Y. Wang, B. Z. Pan & N. Zhao, 2012. Distribution and species composition of macroinvertebrates in the hyporheic zone of bed sediment. International Journal of Sediment Research 27: 129–140.

    Article  Google Scholar 

  • Xu, M. Z., Z. Y. Wang, X. H. Duan & B. Z. Pan, 2014a. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 729: 247–259.

    Article  CAS  Google Scholar 

  • Xu, M. Z., Z. Y. Wang, B. Z. Pan & G. Yu, 2014b. The assemblage characteristics of benthic macroinvertebrates in the Yalutsangpo River, the highest major river in the world. Frontiers of Earth Science 8: 351–361.

    Article  CAS  Google Scholar 

  • Yang, C. T., 1973. Incipient motion and sediment transport. Journal of the Hydraulics Division 99: 1679–1704.

    Google Scholar 

  • Zhao, N., Z. Y. Wang, B. Z. Pan, M. Z. Xu & Z. W. Li, 2015. Macroinvertebrate assemblages in mountain streams with different streambed stability. River Research and Applications 31: 825–833.

    Article  Google Scholar 

  • Zhou, S. R. & D. Y. Zhang, 2008. A nearly neutral model of biodiversity. Ecology 89: 248–258.

    Article  PubMed  Google Scholar 

  • Zhou, C. F., L. Y. Zheng & K. Y. Zhou, 2002. Morphological diversity of mayfly nymphs and its adaptive derivation. Chinese Journal of Zoology 38: 81–85. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (51479091, 51525901, 91547204, 51622901), the Ministry of Water Resources of China (201501028), a Tsinghua University Project Grant (2015THZ02-1), and the Yellow River Institute of Hydraulic Research (HKY-JBYW-2016-03) (2016-KY-04). We are grateful for the assistance of Xuzhao Wang, Lujie Han, Le Liu, and Yutong Zheng in the field work. We would like to thank the reviewers and editors for their comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengzhen Xu.

Additional information

Handling editor: Marcello Moretti

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, Z., Xu, M. et al. Stream power as a predictor of aquatic macroinvertebrate assemblages in the Yarlung Tsangpo River Basin (Tibetan Plateau). Hydrobiologia 797, 215–230 (2017). https://doi.org/10.1007/s10750-017-3180-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3180-9

Keywords

Navigation