Skip to main content
Log in

Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta)

  • ROTIFERA XIV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

A Correction to this article was published on 02 October 2019

This article has been updated

Abstract

Three well-defined groups, consisting of 15 species, have recently been ascribed to organisms historically identified as the Brachionus plicatilis species complex. One of these groups, the large clade, is composed of two named species (Brachionus plicatilis s.s. and Brachionus manjavacas) and two species identifiers (B. ‘Nevada’ and B. ‘Austria’). B. ‘Austria’ has been confirmed to be B. asplanchnoidis. As no type specimen exists for this species, and the original taxonomic description is lacking in detail, we give a detailed account of this species using material from Obere Halbjochlacke in Austria where B. ‘Austria’ was first identified genetically. Our analysis of B. asplanchnoidis populations was of global scope, an approach that revealed a great degree of morphological variability. However, combining aspects of both the dorsal and ventral surfaces clearly discriminated B. asplanchnoidis from the rest of the large-type members. This approach may prove useful in taxonomic studies of other cryptic species with relatively few morphological features. We also observed a geographic pattern of genetic divergence within B. asplanchnoidis. Average uncorrected COI divergences for a 554-bp fragment of the COI gene ranged from 3.9% within species to 17.5% between species of the large clade and indicate deep divisions within the cryptic species complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 02 October 2019

    The authors of the original publication recognized that, for three of the clones (MAN-L5, LFL2, KOR), the data of two of the raw morphometric measurements contained in Supplementary Material 2 of the article were flipped (the distance between the anterior tips of the 3rd dorsal spines ���b��� and the width of the lorica ���c���). The corrected Supplementary material 2 is provided here. As a consequence, the principal components analysis (PCA) and discriminant analysis (DA) were repeated, and the corrected version of Fig.��3, Tables��4, 5, 6, and 7 are also provided here.

  • 02 October 2019

    The authors of the original publication recognized that, for three of the clones (MAN-L5, LFL2, KOR), the data of two of the raw morphometric measurements contained in Supplementary Material 2 of the article were flipped (the distance between the anterior tips of the 3rd dorsal spines ���b��� and the width of the lorica ���c���). The corrected Supplementary material 2 is provided here. As a consequence, the principal components analysis (PCA) and discriminant analysis (DA) were repeated, and the corrected version of Fig.��3, Tables��4, 5, 6, and 7 are also provided here.

References

  • Abramoff, M. D., P. J. Magalhaes & S. J. Ram, 2004. Image processing with ImageJ. Biophotonics International 11: 36–42.

    Google Scholar 

  • Ahlstrom, E. H., 1940. A revision of the rotatorian genera Brachionus and Platyias, with descriptions of one new species and two new varieties. Bulletin of the American Museum of Natural History 77: 143–184.

    Google Scholar 

  • Brown, J. M., S. M. Hedtke, A. R. Lemmon & E. M. Lemmon, 2010. When trees grow too long: investigating the causes of highly inaccurate bayesian branch-length estimates. Systematic Biology 59: 145–161.

    Article  PubMed  Google Scholar 

  • Campillo, S., E. M. García-Roger, D. Martínez-Torres & M. Serra, 2005. Morphological stasis of two species belonging to the L-morphotype in the Brachionus plicatilis species complex. Hydrobiologia 546: 181–187.

    Article  Google Scholar 

  • Charin, N. N., 1947. O novom vide kolovratki is roda Brachionus. Doklady Akademii Nauk SSSR 56: 107–108.

    Google Scholar 

  • Ciros-Pérez, J., A. Gómez & M. Serra, 2001. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n.sp. Journal of Plankton Research 23: 1311–1328.

    Article  Google Scholar 

  • Darriba, D., G. L. Taboada, R. Doallo & D. Posada, 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond, A. J., M. A. Suchard, D. Xie & A. Rambaut, 2012. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezard, T., T. Fujisawa & T. G. Barraclough, 2014. splits: SPecies’ LImits by Threshold Statistics. R package version 1.0-19/r51. [available on internet at http://R-Forge.R-project.org/projects/splits/].

  • Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

    CAS  PubMed  Google Scholar 

  • Fontaneto, D., 2014. Molecular phylogenies as a tool to understand diversity in rotifers. International Review of Hydrobiology 99: 178–187.

    Article  CAS  Google Scholar 

  • Fontaneto, D., I. Giordani, G. Melone & M. Serra, 2007. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583: 297–307.

    Article  Google Scholar 

  • Fontaneto, D., M. Kaya, E. A. Herniou & T. G. Barraclough, 2009. Extreme levels of hidden diversity in microscopic animals (Rotifera) revealed by DNA taxonomy. Molecular Phylogenetics and Evolution 53: 182–189.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., K. Hirayama & Y. Natsukari, 1991. Morphological differences between two types of the rotifer Brachionus plicatilis O.F. Müller. Journal of Experimental Marine Biology and Ecology 151: 29–41.

    Article  Google Scholar 

  • Gómez, A. & G. R. Carvalho, 2000. Sex, parthenogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Molecular Ecology 9: 203–214.

    Article  PubMed  Google Scholar 

  • Gómez, A., M. Temprano & M. Serra, 1995. Ecological genetics of a cyclical parthenogen in temporary habitats. Journal of Evolutionary Biology 8: 601–622.

    Article  Google Scholar 

  • Gómez, A., M. Serra, G. R. Carvalho & D. H. Lunt, 2002. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56: 1431–1444.

    Article  PubMed  Google Scholar 

  • Horváth, Z. C. F., A. Vad, K. Tóth, E. Zsuga, L. Vörös Boros & R. Ptacnik, 2014. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: when the going gets tough, the tough get going. Oikos 123: 461–471.

    Article  Google Scholar 

  • International Commission on Zoological Nomenclature, 1999. International Code of Zoological Nomenclature, 4th edition, 306 pp.

  • Itigilova, M. Ts., A. Dulmaa & E Yu Afonina, 2014. Zooplankton of lakes of the Uldza and Kerulen River Valleys of northeastern Mongolia. Inland Water Biology 7: 249–258.

    Article  Google Scholar 

  • Jersabek, C. D. & E. Bolortsetseg, 2010. Mongolian rotifers (Rotifera, Monogononta) – a checklist with annotations on global distribution and autecology. Proceeding of the Academy of Natural Sciences of Philadephia 159: 119–168.

    Article  Google Scholar 

  • Jersabek, C. D., E. Bolortsetseg & H. L. Taylor, 2010. Mongolian rotifers on microscope slides: instructions to permanent specimen mounts from expedition material. Mongolian Journal of Biological Sciences 8: 51–57.

    Article  Google Scholar 

  • Koste, W. & R. J. Shiel, 1980. New Rotifera from Australia. Transactions of the Royal Society of South Australia 104: 133–144.

    Google Scholar 

  • Kutikova, L.A., 1970. Rotifer Fauna USSR. Fauna USSR. 104. Leningrad: Acad. Nauk. SSSR.

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, D. C., 2010. Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. Systematic Biology 59: 108–117.

    Article  PubMed  Google Scholar 

  • Mills, S., J. Arturo Alcántara-Rodríguez, J. Ciros-Pérez, A. Gómez, A. Hagiwara, K. Hinson Galindo, C. D. Jersabek, R. Malekzadeh-Viayeh, F. Leasi, J.-S. Lee, D. B. M. Welch, S. Papakostas, S. Riss, H. Segers, M. Serra, R. Shiel, R. Smolak, T. W. Snell, C.-P. Stelzer, C. Q. Tang, R. L. Wallace, D. Fontaneto & E. J. Walsh, 2016. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia (this volume)

  • Okogwu, O. I., 2010. Seasonal variations of species composition and abundance of zooplankton in Ehoma Lake, a floodplain lake in Nigeria. Revista de Biologia Tropical 58: 171–182.

    PubMed  Google Scholar 

  • Oogami, H., 1976. On the morphology of Brachionus plicatilis (in Japanese). Newsletter Izu Branch, Shizuoka Prefectural Fisheries Research Center 18: 2–5.

    Google Scholar 

  • Ovander, E., N. Iakovenko, V. Trokhymets, Yu Gromova, O. Pashkova & L. Guleikova, 2011. Annotated checklist of monogonont rotifers belonging to the order Ploima (Rotifera: Eurotatoria, Monogonontam Ploima) of Ukraine. Part II. PИБOГOCПOДAPCЬКA HAУКA УКPAÏHИ 3: 46–54.

    Google Scholar 

  • Papakostas, S., A. Triantafyllidis, I. Kappas & T. J. Abatzopoulos, 2005. The utility of the 16S gene in investigating cryptic speciation within the Brachionus plicatilis species complex. Marine Biology 147: 1129–1139.

    Article  CAS  Google Scholar 

  • Papakostas, S., A. Triantafyllidis, I. Kappas & T. J. Abatzopoulos, 2009. Clonal composition of Brachionus plicatilis s.s. and B. sp. ‘Austria’ hatchery strains based on microsatellite data. Aquaculture 296: 15–20.

    Article  CAS  Google Scholar 

  • Papakostas, S., E. Michaloudi, A. Triantafyllidis, I. Kappas & T. J. Abatzopoulos, 2013. Allochronic divergence and clonal succession: two microevolutionary processes sculpturing population structure of Brachionus rotifers. Hydrobiologia 700: 33–45.

    Article  Google Scholar 

  • Paradis, E., J. Claude & K. Strimmer, 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, W. D. Sumlin & A. P. Vogler, 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609.

    Article  PubMed  Google Scholar 

  • Proios, K., E. Michaloudi, S. Papakostas, I. Kappas, K. Vasileiadou & T. J. Abatzopoulos, 2014. Updating the description and taxonomic status of Brachionus sessilis Varga, 1951 (Rotifera: Brachionidae) based on detailed morphological analysis and molecular data. Zootaxa. 3873: 345–370.

    Article  PubMed  Google Scholar 

  • Rambaut, A., M. A. Suchard, D. Xie & A. J. Drummond, 2014. Tracer v1.6 [available on internet at http://beast.bio.ed.ac.uk/Tracer].

  • Riss, S., W. Arthofer, F. M. Steiner, B. C. Schlick-Steiner, M. Pichler, P. Stadler & C.-P. Stelzer, 2016. Do genome size differences within Brachionus asplanchnoidis (Rotifera, Monogononta) cause reproductive barriers among geographic populations? Hydrobiologia (this volume)

  • Rong, S., H. Segers & H. J. Dumont, 1998. Distribution of Brachionidae (Rotifera, Monogononta) in Inner Mongolian waters. International Review of Hydrobiology 83: 305–310.

    Article  Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlick-Steiner, B. C., B. Seifert, C. Stauffer, E. Christian, R. H. Crozier & F. M. Steiner, 2007. Without morphology, cryptic species stay in taxonomic crypsis following discovery. Trends in Ecology and Evolution 22: 391–392.

    Article  PubMed  Google Scholar 

  • Segers, H., 1995. Nomenclature consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313(314): 121–122.

    Article  Google Scholar 

  • Segers, H., 2007. Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564: 1–104.

    Google Scholar 

  • Segers, H., G. Murugan & H. J. Dumont, 1993. On the taxonomy of the Brachionidae: description of Plationus n. gen. (Rotifera, Monogononta). Hydrobiologia 268: 1–8.

    Article  Google Scholar 

  • Segers, H., W. De Smet, C. Fischer, D. Fontaneto, E. Michaloudi, R. L. Wallace & C. D. Jersabek, 2012. Towards a list of available names in zoology, partim Phylum Rotifera. Zootaxa 3179: 61–68.

    Google Scholar 

  • Stamatakis, A., P. Hoover & J. Rougemont, 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771.

    Article  PubMed  Google Scholar 

  • Stelzer, C. P., S. Riss & P. Stadler, 2011. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera). BMC Evolutionary Biology 11: 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suatoni, E., S. Vicario, S. Rice, T. Snell & A. Caccone, 2006. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer – Brachionus plicatilis. Molecular Phylogenetics and Evolution 41: 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Sukumaran, J. & M. T. Holder, 2010. DendroPy: a Python library for phylogenetic computing. Bioinformatics 26: 1569–1571.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, C. Q., F. Leasi, U. Obertegger, A. Kieneke, T. G. Barraclough & D. Fontaneto, 2012. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences 109: 16208–16212.

    Article  CAS  Google Scholar 

  • Tóth, A., Z. Horváth, C. F. Vad, K. Zsuga, S. A. Nagy & E. Boros, 2014. Zooplankton of the European soda pans: Fauna and conservation of a unique habitat type. International Review of Hydrobiology 99: 255–276.

    Article  Google Scholar 

  • Xiang, X.-L., Y.-L. Xi, X.-L. Wen, G. Zhang, J.-X. Wang & K. Hu, 2011. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Molecular Phylogenetics and Evolution 59: 386–398.

    Article  PubMed  Google Scholar 

  • Yermolaeva, N. I. & O. S. Burmistrova, 2005. Influence of mineralization on zooplankton of the Lake Chany. Cubupckuŭ Эkoлozuлeckuŭ жypнaл 2: 235–247.

    Google Scholar 

  • Zagorodnyaya, Y. A., E. A. Batogova & N. V. Shadrin, 2008. Long-term transformation of zooplankton in the hypersaline lake Bakalskoe (Crimea) under salinity fluctuations. MOPCЬКИЙ EКOЛOГIЧHИЙ ЖУPHAЛ 7: 41–50.

    Google Scholar 

Download references

Acknowledgments

We would like to thank M. Serra and T.W. Snell for providing individuals and resting eggs from clones they keep in their laboratories; M. Pichler for providing technical assistance; A. Herzig for assisting in the collection of samples from Obere Halbjochlacke and Oberer Stinkersee (Austria), and C. Jersabek for the collection of sediments from which MNCHU clones were extracted and for assistance with the identification of OHJ72. This work was partially supported by an EU research project (ROTIGEN, Q5RS-2002-01302), while SP was supported by the Academy of Finland (Grant Number 258048). We gratefully acknowledge the efforts of two anonymous reviewers and D. Fontaneto whose valuable suggestions were extremely helpful to finally shape the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Michaloudi.

Additional information

Evangelia Michaloudi, Scott Mills and Spiros Papakostas have contributed equally to this work.

Guest editors: M. Devetter, D. Fontaneto, C. D. Jersabek, D. B. Mark Welch, L. May & E. J. Walsh / Evolving rotifers, evolving science

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 383 kb)

Supplementary material 2 (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michaloudi, E., Mills, S., Papakostas, S. et al. Morphological and taxonomic demarcation of Brachionus asplanchnoidis Charin within the Brachionus plicatilis cryptic species complex (Rotifera, Monogononta). Hydrobiologia 796, 19–37 (2017). https://doi.org/10.1007/s10750-016-2924-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2924-2

Keywords

Navigation