Skip to main content
Log in

Comparison of genetic diversity in four Typha species (Poales, Typhaceae) from China

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Life history traits play an important role in the level and distribution of genetic diversity, and comparing closely related species with similar life histories can provide insight into the determinants of genetic variation in plant populations. In this study, we used variations of one chloroplast DNA fragment, one nuclear gene, and six microsatellites to compare the levels and distributions of genetic diversity in four widespread Typha species from China. Surveys were conducted on 898 individuals from 120 sites. The individuals of all four species formed monophyletic clades and distinct genetic clusters, suggesting no hybridization between T. angustifolia and T. latifolia in China. The levels of cpDNA nucleotide diversity followed the order T. latifolia > T. laxmannii > T. angustifolia > T. orientalis, whereas the genetic diversity in nDNA and nSSR of T. laxmannii and T. angustifolia was higher than that of T. latifolia. In T. angustifolia, T. laxmannii, and T. orientalis, more than half of genetic variation occurred within populations, and in T. latifolia, most of genetic variation occurred among populations. The variation in the levels and distributions of genetic diversity among the four species can be attributed to differences in inflorescence characteristics which either limit or enhanced outcrossing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alm, C. G. & H. Weimarck, 1933. Typha angustifolia L. × latifolia L. funnen i Skåne. Botaniska Notiser 1933: 279–284.

  • An, J. X., Q. Wang, J. Yang & J. Q. Liu, 2012. Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. Journal of Systematics and Evolution 50: 334–340.

    Article  Google Scholar 

  • Ball, D. & J. R. Freeland, 2013. Synchronous flowering times and asymmetrical hybridization in Typha latifolia and T. angustifolia in northeastern North America. Aquatic Botany 104: 224–227.

    Article  Google Scholar 

  • Bohonak, A. J., 2002. IBD (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity 93: 153–154.

    Article  CAS  PubMed  Google Scholar 

  • Carrió, E., A. D. Forrest, J. Güemes & P. Vargas, 2010. Evaluating species nonmonophyly as a trait affecting genetic diversity: a case study of three endangered species of Antirrhinum L. (Scrophulariaceae). Plant Systematics and Evolution 288: 43–58.

    Article  Google Scholar 

  • Clement, M., D. Posada & K. A. Crandall, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Cook, C. D. K., 1990. Aquatic plant book. SPB Academic Publishing, Hague.

    Google Scholar 

  • Ekstam, B. & Å. Forseby, 1999. Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature. Seed Science Research 9: 157–163.

    Article  Google Scholar 

  • Ennos, R. A., 1994. Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72: 250–259.

    Article  Google Scholar 

  • Excoffier, L., G. Laval & S. Schneider, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.

    CAS  PubMed Central  Google Scholar 

  • Falush, D., M. Stephens & J. K. Pritchard, 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fér, T., 2008. Study of plant dispersal in river corridors using molecular markers. Ph.D. dissertation, Charles University Prague, Prague.

  • Figert, E., 1890. Botanische Mitteilungen aus Schlesien. III. Typha latifolia × Typha angustifolia. Deutsche Botanische Monatsschrift 8: 55–57.

    Google Scholar 

  • Galeuchet, D. J., R. Husi, C. Perret, M. Fischer & B. Gautschi, 2002. Characterization of microsatellite loci in Lychnis flos-cuculi (Caryophyllaceae). Molecular Ecology Notes 2: 491–492.

    Article  CAS  Google Scholar 

  • Goudet, J., 1995. FSTAT: a computer program to calculate statistics, version 1.2. Journal of Heredity 86: 485–486.

    Google Scholar 

  • Hamrick, J. L. & M. J. W. Godt, 1989. Allozyme diversity in plant species. In Brown, A. H. D., M. T. Clegg, A. L. Kahler & B. S. Weir (eds), Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland: 43–63.

    Google Scholar 

  • Hamrick, J. L. & M. J. W. Godt, 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291–1298.

    Google Scholar 

  • Hamrick, J. L., M. Godt & S. Sherman-Broyles, 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124.

    Article  Google Scholar 

  • Hartl, D. L., 2000. A primer of population genetics. Sinaue, Sunderland.

    Google Scholar 

  • Katoh, K., K. Misawa, K. I. Kuma & T. Miyata, 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keane, B., S. Pelikan, G. P. Toth, M. K. Smith & S. H. Rogstad, 1999. Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes. American Journal of Botany 86: 1226–1238.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, H., C. Connolly & J. R. Freeland, 2011. Molecular genetic data reveal hybridization between Typha angustifolia and Typha latifolia across a broad spatial scale in eastern North America. Aquatic Botany 95: 189–193.

    Article  Google Scholar 

  • Krattinger, K., 1975. Genetic mobility in Typha. Aquatic Botany 1: 57–70.

    Article  Google Scholar 

  • Kuehn, M. M., J. E. Minor & B. N. White, 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981–1990.

    Article  CAS  PubMed  Google Scholar 

  • Lamote, V., M. De Loose, E. Van Bockstaele & I. Roldán-Ruiz, 2005. Evaluation of AFLP markers to reveal genetic diversity in Typha. Aquatic Botany 83: 296–309.

    Article  CAS  Google Scholar 

  • Lee, D. W., 1975. Population Variation and Introgression in North American Typha. Taxon 24: 633–641.

    Article  Google Scholar 

  • Lee, D. W. & D. E. Fairbrothers, 1973. Enzyme differences between adjacent hybrid and parent populations of Typha. Bulletin of the Torrey Botanical Club 100: 3–11.

    Article  CAS  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Loveless, M. D. & J. L. Hamrick, 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15: 65–95.

    Article  Google Scholar 

  • Luther, H. E., 1947. Typha angustifolia × latifolia L. (T. × glauca Godr.) I Ostfennoskandien. Memoranda Societatis Flora et Fauna Fennica 23: 66–75.

    Google Scholar 

  • Martins, E., R. Lamont, G. Martinelli, C. Lira-Medeiros, A. Quinet & A. Shapcott, 2014. Genetic diversity and population genetic structure in three threatened Ocotea species (Lauraceae) from Brazil’s Atlantic Rainforest and implications for their conservation. Conservation Genetics 16: 1–14.

    Article  Google Scholar 

  • Mashburn, S. J., R. R. Sharitz & M. H. Smith, 1978. Genetic variation among Typha populations of the southeastern United States. Evolution 32: 681–685.

    Article  Google Scholar 

  • Mateu-Andrés, I. & L. De Paco, 2006. Genetic diversity and the reproductive system in related species of Antirrhinum. Annals of Botany 98: 1053–1060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Na, H. R., C. Kim & H.-K. Choi, 2010. Genetic relationship and genetic diversity among Typha taxa from East Asia based on AFLP markers. Aquatic Botany 92: 207–213.

    Article  CAS  Google Scholar 

  • Nauta, M. J. & F. J. Weissing, 1996. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143: 1021–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, W. L., Y. Onishi, N. Inomata, K. M. Teshima, H. T. Chan, S. Baba, S. Changtragoon, I. Z. Siregar & A. E. Szmidt, 2015. Closely related and sympatric but not all the same: genetic variation of Indo-West Pacific Rhizophora mangroves across the Malay Peninsula. Conservation Genetics 16: 137–150.

    Article  Google Scholar 

  • Nowińska, R., B. Gawrońska, A. Czarna & M. Wyrzykiewicz-Raszewska, 2014. Typha glauca Godron and its parental plants in Poland: taxonomic characteristics. Hydrobiologia 737: 163–181.

    Article  Google Scholar 

  • Nybom, H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13: 1143–1155.

    Article  CAS  PubMed  Google Scholar 

  • Petit, R. J., J. Duminil, S. Fineschi, A. Hampe, D. Salvini & G. G. Vendramin, 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology 14: 689–701.

    Article  CAS  PubMed  Google Scholar 

  • Pons, O. & R. Petit, 1996. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144: 1237–1245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robuchon, M., L. Le Gall, S. Mauger & M. Valero, 2014. Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Molecular Ecology 23: 2669–2685.

    Article  PubMed  Google Scholar 

  • Rousset, F., 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selbo, S. M. & A. A. Snow, 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–369.

    Article  Google Scholar 

  • Sharitz, R. R., S. A. Wineriter, M. H. Smith & E. H. Liu, 1980. Comparison of isozymes among Typha species in the eastern United States. American Journal of Botany 67: 1297–1303.

    Article  CAS  Google Scholar 

  • Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling & R. L. Small, 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92: 142–166.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, J., E. B. Lickey, E. E. Schilling & R. L. Small, 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Skrede, I., L. Borgen & C. Brochmann, 2009. Genetic structuring in three closely related circumpolar plant species: AFLP versus microsatellite markers and high-arctic versus arctic–alpine distributions. Heredity 102: 293–302.

    Article  CAS  PubMed  Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. G., 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–287.

    Article  Google Scholar 

  • Smith, S. G., 1987. Typha: its taxonomy and the ecological significance of hybrids. Archiv fü Hydrobiologie 27: 129–138.

    Google Scholar 

  • Snow, A. A., S. E. Travis, R. Wildová, T. Fér, P. M. Sweeney, J. E. Marburger, S. Windels, B. Kubátová, D. E. Goldberg & E. Mutegi, 2010. Species-specific SSR alleles for studies of hybrid cattails (Typha latifolia × T. angustifolia; Typhaceae) in North America. American Journal of Botany 97: 2061–2067.

    Article  PubMed  Google Scholar 

  • Sun, K. & D. Simpson, 2010. Typhaceae. In Wu, Z. Y. & P. H. Raven (eds), Flora of China. vol. 23. Science Press, Beijing: 158–163.

    Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terer, T., A. M. Muasya & L. Triest, 2015. Strong isolation by distance revealed among Cyperus papyrus populations in the Rift Valley lakes, Lake Victoria, and isolated wetlands of Kenya. Aquatic Botany 121: 57–66.

    Article  Google Scholar 

  • Travis, S. E., J. E. Marburger, S. Windels & B. Kubátová, 2010. Hybridization dynamics of invasive cattail (Typhaceae) stands in the Western Great Lakes Region of North America: a molecular analysis. Journal of Ecology 98: 7–16.

    Article  Google Scholar 

  • Tsyusko, O. V., M. H. Smith, R. R. Sharitz & T. C. Glenn, 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal of Botany 92: 1161–1169.

    Article  PubMed  Google Scholar 

  • Tsyusko-Omeltchenko, O. V., N. A. Schable, M. H. Smith & T. C. Glenn, 2003. Microsatellite loci isolated from narrow-leaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535–538.

    Article  CAS  Google Scholar 

  • Xu, X. W., W. D. Ke, X. P. Yu, J. Wen & S. Ge, 2008. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences. Theoretical and Applied Genetics 116: 835–843.

    Article  PubMed  Google Scholar 

  • Zhang, X. H., M. Tapia, J. B. Webb, Y. H. Huang & S. Miao, 2008. Molecular signatures of two cattail species, Typha domingensis and Typha latifolia (Typhaceae), in South Florida. Molecular Phylogenetics and Evolution 49: 368–376.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China to Xinwei Xu (31070190 and 31270265) and Dan Yu (30930011). We thank the members of Dan Yu’s group for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Yu or Xinwei Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Sidinei Magela Thomaz

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2015_2574_MOESM1_ESM.docx

Supplementary material 1 (DOCX 65 kb) Online Resource 1: Collection information, haplotype distribution and measures of diversity of Typha populations

Supplementary material 2 (DOCX 34 kb) Online Resource 2: Six morphological characteristics of four Typha species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Yu, D., Ding, Z. et al. Comparison of genetic diversity in four Typha species (Poales, Typhaceae) from China. Hydrobiologia 770, 117–128 (2016). https://doi.org/10.1007/s10750-015-2574-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2574-9

Keywords

Navigation