Skip to main content
Log in

The use of fresh and saline water sources by the mangrove Avicennia marina

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mangroves are distributed along tropical and subtropical riverine and coastal shores. Although mangroves are highly adapted to saline environments, maintaining water uptake under saline conditions is energetically expensive. Therefore, salinity is a limiting factor for mangrove growth and productivity, and access to fresh water sources, such as rainwater and groundwater, which reduce water salinity, increase mangrove ecosystem productivity. Here, we investigated the extent of fresh water utilization by mangroves to better predict current and future mangrove productivity. We used the abundance of 18O isotope in stem water to assess: (1) the extent of fresh water utilization by Avicennia marina (Forssk.) Vierh across hydrological settings; and (2) whether growth, measured as increments in stem circumference, is sensitive to variation in rainfall availability. The δ18O isotopic composition of stem water indicated mangroves use both fresh and saline water sources for metabolic processes. However, our results suggest that the proportion of fresh water used by mangroves increases with the availability of fresh water. Growth of the main stems of trees was correlated with rainfall (r 2 = 0.34 and r 2 = 0.37, P = 0.001). Our results indicate that access to fresh water is important for mangrove productivity because it enhances their growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alongi, D. M., 2009. The Energetics of Mangrove Forests. Springer, Dordrecht.

    Google Scholar 

  • Alongi, D. M. & R. Brinkman, 2011. Hydrology and Biogeochemistry of Mangrove Forests. In Levia, F. D., D. Carlyle-Moses & T. Tanaka (eds), Forest Hydrology and Biogeochemistry. Springer, Dordrecht: 203–219.

    Chapter  Google Scholar 

  • Australian Bureau of Meteorology, 2014. Australian Bureau of Meteorology home page. Commonwealth of Australia: Canberra [Available at http://www.bom.gov.au]. Accessed 15 January 2014.

  • Ball, M. C., 1988. Ecophysiology of mangroves. Trees 2: 129–142.

    Article  Google Scholar 

  • Brunskill, G. J., A. R. Orpin, I. Zagorskis, K. J. Woolfe & J. Ellison, 2001. Geochemistry and particle size of surface sediments of Exmouth Gulf, Northwest shelf, Australia. Continental Shelf Research 21: 157–201.

    Article  Google Scholar 

  • Bucci, S. J., F. G. Scholz, G. Goldstein, F. C. Meinzer, J. A. Hinojosa, W. A. Hoffmann & A. C. Franco, 2004. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiology 24: 1119–1127.

    Article  PubMed  Google Scholar 

  • Clough, B. F., 1984. Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity. Australian Journal of Plant Physiology 11: 419–430.

    Article  CAS  Google Scholar 

  • Dennison, W. C. & E. G. Abal, 1999. Moreton Bay Study. A Scientific Basis for the Healthy Waterways Campaign. Brisbane City Council, Brisbane.

    Google Scholar 

  • Ellsworth, P. & D. Williams, 2007. Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil 291: 93–107.

    Article  CAS  Google Scholar 

  • Eslami-Andargoli, L., P. Dale, N. Sipe & J. Chaseling, 2009. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland Australia. Estuarine, Coastal and Shelf Science 85: 292–298.

    Article  Google Scholar 

  • Ewe, S., S. Sternberg & D. Childers, 2007. Seasonal plant water uptake patterns in the saline southeast Everglades ecotone. Oecologia 152: 607–616.

    Article  PubMed  Google Scholar 

  • Hewson, I., J. M. O’ Neil, J. A. Furhman & W. C. Dennison, 2001. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnology and Oceanography 46: 1734–1746.

    Article  Google Scholar 

  • Humphreys, W. F., C. H. S. Watts, S. J. B. Cooper & R. Leijs, 2009. Groundwater estuaries of salt lakes: Buried pools of endemic biodiversity on the western plateau. Hydrobiologia 626: 79–95.

    Article  CAS  Google Scholar 

  • Hutchings, P. & P. Saenger, 1987. Ecology of Mangroves. University of Queensland Press, Brisbane.

    Google Scholar 

  • Komiyama, A., K. Ogino, S. Aksornkoae & S. Sabhasri, 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97–108.

    Article  Google Scholar 

  • Lagergren, F. & A. Lindroth, 2004. Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management 188: 51–63.

    Article  Google Scholar 

  • Lambs, L., E. Muller & F. Fromard, 2008. Mangrove trees growing in a very saline condition but not using seawater. Rapid Communications in Mass Spectrometry 22: 2835–2843.

    Article  CAS  PubMed  Google Scholar 

  • Lambers, H., F. S. Chapin III & T. L. Pons, 2008. Plant Physiological Ecology. Springer, New York.

    Book  Google Scholar 

  • Larsen, G. R. & M. E. Cox, 2011. Hydrochemical and isotopic characterisation of groundwaters to define aquifer type and connectivity in a subtropical coastal setting, Fraser Coast, Queensland. Environmental Earth Sciences 64: 1885–1909.

    Article  CAS  Google Scholar 

  • Lin, G. & L. Sternberg, 1992. Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.). Australian Journal of Plant Physiology 19: 509–517.

    Article  CAS  Google Scholar 

  • Lin G. & L. Sternberg, 1993. Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetland plants In Ehleringer J. R., A. E. Hall & A. E. Farquhar (eds), Stable isotopes and plant carbon-water relations. Academic Press Inc, New York: 497–510.

  • Lovelock, C. E., M. C. Ball, I. C. Feller, B. M. J. Engelbrecht & M. L. Ewe, 2006. Variation in hydraulic conductivity of mangroves: Influence of species, salinity, and nitrogen and phosphorous availability. Physiologia Plantarum 127: 457–464.

    Article  CAS  Google Scholar 

  • McGuire, K. & J. McDonnell, 2007. Stable isotopes tracers in watershed hydrology. In Michener, R. & K. Lajtha (eds), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Malden: 334–373.

    Chapter  Google Scholar 

  • McKee, K. L., 2001. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests? Journal of Ecology 89: 876–887.

    Article  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn & M. W. Hester, 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany 75: 1352–1359.

    Article  Google Scholar 

  • Menezes, M., U. Berger & M. Worbes, 2003. Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetlands Ecology and Management 11: 233–242.

    Article  Google Scholar 

  • Morrisey, D., A. Swales, S. Dittmann, M. Morrison, C. E. Lovelock & C. Beard, 2010. The ecology and management of temperate mangroves. Oceanography and Marine Biology: An Annual Review 48: 43–160.

    Article  Google Scholar 

  • Pallardy, S., 2008. Physiology of woody plants. Academic Press, San Diego.

    Google Scholar 

  • Parnell, A. C., R. Inger, S. Bearhop & A. L. Jackson, 2010. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5: e9672.

    Article  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  • Reef, R. & C. E. Lovelock, 2014. Regulation of water balance in mangroves. Annals of Botany. doi: 10.1093/aob/mcu174

  • Ridd, P. V., 1996. Flow through animal burrows in mangrove swamps. Estuarine, Coastal and Shelf Science 43: 617–625.

    Article  Google Scholar 

  • Santini, N. S., N. Schmitz & C. E. Lovelock, 2012. Variation in wood density and anatomy in a widespread mangrove species. Trees 26: 1555–1563.

    Article  Google Scholar 

  • Scholander, P. F., 1968. How mangroves desalinate seawater. Physiologia Plantarum 21: 251–261.

    Article  CAS  Google Scholar 

  • Semeniuk, V., 1983. Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio 53: 11–31.

    Article  Google Scholar 

  • Smith, T. J. & N. C. Duke, 1987. Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. Journal of Biogeography 14: 9–19.

    Article  Google Scholar 

  • Sternberg, L. & P. K. Swart, 1987. Utilization of freshwater and ocean water by coastal plants of Southern Florida. Ecology 68: 1898–1905.

    Article  Google Scholar 

  • Stieglitz, T. C., J. F. Clark & G. J. Hancock, 2013. The mangrove pump: The tidal flushing of animal burrows in a tropical mangrove forest determined from radionuclide budgets. Geochimica et Cosmochimica Acta 102: 12–22.

    Article  CAS  Google Scholar 

  • Susilo, A., P. V. Ridd & S. Thomas, 2005. Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetlands Ecology and Management 13: 377–388.

    Article  Google Scholar 

  • Upkong, L. E., 1991. The performance and distribution of species along soils salinity gradients of mangrove swamps in southeastern Nigeria. Vegetatio 95: 63–70.

    Article  Google Scholar 

  • Vandegehuchte, M. W., A. Guyot, M. Hubau, S. R. De Groote, N. J. De Baerdemaeker, M. Hayes, C. E. Lovelock & K. Steppe, 2014. Long-term versus daily stem diameter variation in co-occurring mangrove species: Environmental versus ecophysiological drivers. Agricultural and Forest Meteorology 192: 51–58.

    Article  Google Scholar 

  • Wei, L., D. A. Lockington, S. Poh, M. Gasparon & C. E. Lovelock, 2012. Water use patterns of estuarine vegetation in a tidal creek system. Oecologia 172: 485–494.

    Article  PubMed  Google Scholar 

  • West, A. G., S. J. Patrickson & J. R. Ehleringer, 2006. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Communications in Mass Spectrometry 20: 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  • Wolanski, E., 1986. An evaporation-driven salinity maximum zone in Australian tropical estuaries. Estuarine, Coastal and Shelf Science 22: 415–424.

    Article  CAS  Google Scholar 

  • Ye, Y., N. F. Tam, C. Lu & Y. Wong, 2005. Effects of salinity on germination, seedling, growth and physiology of three salt-secreting mangrove species. Aquatic Botany 83: 193–205.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Council for Science and Technology (Mexico), the Secretary of Public Education (Mexico), the Australian Research Councils (ARC) National Centre for Groundwater Research and Training (Australia), partial support from ARC project DP1096749. We also thank The School of Biological Sciences and The School of Civil Engineering at the University of Queensland (Australia) for financial support. We thank Dr. Tim R. Mercer for editorial assistance and Vicki Bennion, Mitchell Zischke, Dr. Mothei Lenkopane, Dr. Adrien Guyot, Dr. Alistair Grinham and Dr. Lili Wei for fieldwork assistance. We also thank the Associate Editor and two anonymous Reviewers for their comments and suggestions, which helped to improve this manuscript.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. Santini.

Additional information

Handling editor: K.W. Krauss

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2014_2091_MOESM1_ESM.tiff

Relationship between δ18O and salinity of water sources for three study regions. The lines are lines of best fit for each study region. Between study region the slopes of the regression lines were significantly different (p < 0.05). For Moreton Bay, the regression is: δ18O = 0.14 Salinity – 4.37 (r 2 = 0.88, ***p < 0.0001, n = 13). For the Noosa River the regression is: δ18O = 0.05 Salinity – 1.72 (r 2 = 0.65, p = 0.008, n = 13). For the Exmouth Gulf the regression is: δ18O = 0.82 Salinity – 8.15 (r 2 = 0.20, p < 0.0001, n = 12). Different symbols represent different water sources, rainwater (circles); pore-water (triangles); seawater (squares); groundwater (upside down triangles). (TIFF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santini, N.S., Reef, R., Lockington, D.A. et al. The use of fresh and saline water sources by the mangrove Avicennia marina . Hydrobiologia 745, 59–68 (2015). https://doi.org/10.1007/s10750-014-2091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2091-2

Keywords

Navigation