Skip to main content
Log in

Strong and stable environmental structuring of the zooplankton communities in interconnected salt ponds

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study investigated assemblages of Copepoda and Artemia in saltern ponds and determined the main environmental factors affecting them. Copepoda and Artemia were collected from four ponds of varying salinity. Community composition was analyzed relative to environmental variables, with a focus on spatial and seasonal changes. We used a method called Costatis, which is particularly suited to analyze species and environmental data collected at the same sites and dates where the relationships between environmental conditions and composition of biological communities are strong and rather stable, which is the case in our system. The major structuring factors identified by Costatis were salinity and N:P ratio. Cyclopoida and Calanoida were associated with low salinity and low N:P ratios; Harpacticoida were associated with high salinity and high N:P ratios; and Artemia were associated with very high salinity and low N:P ratios. The distribution of these groups over the salinity gradient is in accordance with previous results; the influence of N:P ratio had not been identified before and may reflect specific environmental requirements of the taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abid, O., A. Sellami-Kammoun, H. Ayadi, Z. Drira, A. Bouaïn & L. Aleya, 2008. Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuarine Coastal and Shelf Science 80: 391–400.

    Article  Google Scholar 

  • Albeit, J. & W. Scheibel, 1982. Benthic Harpacticoids as food source for fish. Marine Biology 70: 141–147.

    Article  Google Scholar 

  • Alonso, M., 1990. Anostraca, Cladocera and Copepoda of Spanish saline lakes. Hydrobiologia 197: 221–231.

    Article  Google Scholar 

  • Amaral, M. J. & M. H. Costa, 1999. Macrobenthic communities of saltpans from Sado estuary (Portugal). Acta Oecologica 20: 327–332.

    Article  Google Scholar 

  • Amdouni, R., 2009. Behaviour of trace elements during the natural evaporation of sea water: case of solar salt works of Sfax saline (SE of Tunisia). Global Nest Journal 11: 96–105.

    Google Scholar 

  • Ayadi, H., N. Toumi, O. Abid, K. Medhioub, M. Hammami, T. Sime-Ngando, C. Amblard & D. Sargos, 2002. Qualitative and quantitative study of phyto- and zooplankton communities in the saline pounds of Sfax, Tunisia. Journal of Water Science 15: 123–135.

    Google Scholar 

  • Bickel, S. L. & K. W. Tang, 2014. Zooplankton-associated and free-living bacteria in the York River, Chesapeake Bay: comparison of seasonal variations and controlling factors. Hydrobiologia 722: 305–318.

    Article  CAS  Google Scholar 

  • Boxshall, G. A. & S. H. Halsey, 2004. An Introduction to Copepod Diversity. The ray society, London.

    Google Scholar 

  • Bradford-Grieve, J. M., 1994. The marine fauna of New zeland: Pelagic Calanoid Copepoda: Megacalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. New Zealand Oceanographic Institute Memoir.

  • Britton, R. H. & A. R. Johnson, 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biological Conservation 42: 185–230.

    Article  Google Scholar 

  • Bruce, L. C. & E. J. Imberger, 2009. The role of zooplankton in the ecological succession of plankton and benthic algae across a salinity gradient in the Shark Bay solar salt ponds. Hydrobiologia 626: 111–128.

    Article  CAS  Google Scholar 

  • Calbet, A., S. Garrido, E. Saiz, M. Alcaraz & C. M. Duarte, 2001. Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller fractions. Journal of Plankton Research 23: 319–331.

    Article  Google Scholar 

  • Clegg, J. S., J. K. Willsie & S. A. Jackson, 1999. Adaptive significance of a small heat shock/a-crystallin protein (p26) in encysted embryos of the Brine Shrimp, Artemia franciscana. American Zoologist 39: 836–847.

    CAS  Google Scholar 

  • Colburn, E. A., 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215–226.

    Article  CAS  Google Scholar 

  • Damotharan, P., N. V. Perumal, M. Arumugam, P. Perumal, S. Vijayalakshmi & T. Balasubramanian, 2010. Studies on zooplankton ecology from Kodiakkarai (Point Calimere) coastal waters (South East coast of India). Research Journal of Biological Sciences 5: 187–198.

    Article  Google Scholar 

  • Davis, J. S., 2000. Structure, function, and management of the biological system for seasonal solar saltworks. Global Nest Journal 2: 217–226.

    Google Scholar 

  • Davis, J. S. & M. Giordano, 1996. Biological and physical events involved in the origin, effects and control of organic matter in solar saltworks. International Journal of Salt Lake Research 4: 335–347.

    Article  Google Scholar 

  • De-Young, B., M. Heath, F. Werner, B. Megrey & P. Monfray, 2004. Challenges of modeling ocean basin ecosystems. Science 304: 1463–1466.

    Article  Google Scholar 

  • Dolapsakis, N. P., T. Tafas, T. J. Abatzopoulos, S. Ziller & A. Economou-Amilli, 2005. Abundance and growth response of microalgae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. Journal of Applied Phycology 17: 39–49.

    Article  Google Scholar 

  • Drira, Z., M. Bel Hassen, A. Hamza, A. Rebai, A. Bouaïn, H. Ayadi & L. Aleya, 2009. Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (South Ionian Sea, Tunisia). Journal of the Marine Biological Association of the United Kingdom 90: 1203–1215.

    Article  Google Scholar 

  • Elevi Bardavid, R. & A. Oren, 2008. Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 12: 125–131.

    Article  CAS  PubMed  Google Scholar 

  • Elloumi, J., W. Guermazi, H. Ayadi, A. Bouaïn & L. Aleya, 2008. Detection of water and sediments pollution of an arid Saltern (Sfax, Tunisia) by coupling the distribution of microorganisms with hydrocarbons. Water, Air, and Soil Pollution 187: 157–171.

    Article  CAS  Google Scholar 

  • Elloumi, J., W. Guermazi, H. Ayadi, A. Bouaïn & L. Aleya, 2009. Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom 89: 243–253.

    Article  Google Scholar 

  • Evagelopoulos, A., E. Spyrakos & D. Koutsoubas, 2007. The biological system of the lower salinity ponds in Kalloni Saltworks (NE. Aegean Sea, Greece): phytoplankton and macrobenthic invertebrates. Transitional Waters Bulletin 3: 23–25.

    Google Scholar 

  • Gascón, S., X. Llopart, A. Ruiz-Navarro, J. Compte, D. Verdiell-Cubedo, D. Boix, F. J. Oliva-Paterna, X. D. Quintana & M. Torralva, 2013. The effects of Aphanius iberus predation on an aquatic community: diel changes and the role of vegetation. Fundamental and Applied Limnology/Archiv für Hydrobiologie 182: 75–87.

    Article  Google Scholar 

  • Greene, C. H. & A. J. Pershing, 2007. Changes in Arctic climate have contributed to shifts in abundances and seasonal cycles of a variety of species in the northwest Atlantic. Science 315: 1084–1085.

    Article  CAS  PubMed  Google Scholar 

  • Guermazi, W., J. Elloumi, H. Ayadi, A. Bouaïn & L. Aleya, 2008. Coupling changes in fatty acid and protein composition of Artemia salina with environmental factors in the Sfax solar saltern (Tunisia). Aquatic Living Resources 21: 63–73.

    Article  CAS  Google Scholar 

  • Guermazi, W., H. Ayadi & L. Aleya, 2009. Correspondence of the seasonal patterns of the brine shrimp, Artemia salina (Leach, 1819) (Anostraca) with several environmental factors in an arid solar saltern (Sfax, Southern Tunisia). Crustaceana 82: 327–348.

    Article  Google Scholar 

  • Hammer, UT., 1986. Saline lake ecosystems of the world. Dr. W. Junk Publishers, Dordrecht: 616 pp.

  • Hart, C. M., M. R. Gonzalez, E. P. Simpson & S. H. Hurlbert, 1998. Salinity and fish effects on Salton Sea microecosystems: zooplankton and nekton. Hydrobiologia 381: 129–152.

    Article  Google Scholar 

  • Hays, G. C., A. J. Richardson & C. Robinson, 2005. Climate change and marine plankton. Trends in Ecology and Evolution 20: 337–344.

    Article  PubMed  Google Scholar 

  • Heip, C. & P. M. J. Herman, 1985. The stability of a benthic copepod community. Marine Biology Section, Zoology Institute, State University of Ghent: 255–263.

  • Hoffmeyer, M. S., 1994. Seasonal succession of Copepoda in the Bahia Blanca estuary. In Ferrari, F. D. & B. P. Bradley (eds), Ecology and Morphology of Copepods. DH 102, Hydrobiologia 292/293: 303–308.

  • Horváth, Z., C. F. Vad, A. Tóth, K. Zsuga, E. Boros, L. Vörös & R. Ptacnik, 2014. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: when the going gets tough, the tough get going. Oikos 123: 461–471.

    Article  Google Scholar 

  • Jaffrenou, P. A., 1978. Sur l’analyse des familles finies de variables vectorielles. Bases algébriques et application à la description statistique. Thèse de 3e cycle, Sciences et Techniques du Languedoc, Montpellier II, Montpellier.

  • Kchaou, N., J. Elloumi, Z. Drira, A. Hamza, H. Ayadi, A. Bouaïn & L. Aleya, 2009. Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuarine Coastal and Shelf Science 83: 414–424.

    Article  CAS  Google Scholar 

  • Khemakhem, H., J. Elloumi, M. Moussa, L. Aleya & H. Ayadi, 2010. The concept of ecological succession applied to phytoplankton over four consecutive years in five ponds featuring a salinity gradient. Estuarine Coastal and Shelf Science 88: 33–44.

    Article  Google Scholar 

  • Khemakhem, H., J. Elloumi, H. Ayadi, L. Aleya & M. Moussa, 2013. Modelling the phytoplankton dynamics in a nutrient-rich solar saltern pond: predicting the impact of restoration and climate change. Environmental Science and Pollution Research 20: 9057–9065.

    Article  PubMed  Google Scholar 

  • Kobbi-Rebai, R., N. Annabi-Trabelsi, H. Khemakhem, H. Ayadi & L. Aleya, 2013. Impacts of restoration of an uncontrolled phosphogypsum dumpsite on the seasonal distribution of abiotic variables, phytoplankton, copepods, and ciliates in a man-made solar saltern. Environmental Monitoring and Assessment 185: 2139–2155.

    Article  CAS  PubMed  Google Scholar 

  • Lauritano, C., G. Procaccini & A. Ianora, 2012. Gene expression patterns and stress response in marine copepods. Marine Environmental Research 76: 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Leandro, S. M., P. Tiselius, S. C. Marques, F. Avelelas, C. Correia, P. Sa & H. Queiroga, 2014. Copepod production estimated by combining in situ data and specific temperature-dependent somatic growth models. Hydrobiologia. doi:10.1007/s10750-014-1833-5.

  • Lei, Y., K. Xu, J. Ki Choi, H. Pyo Hong & S. A. Wickham, 2009. Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. European Journal of Protistology 45: 305–319.

    Article  PubMed  Google Scholar 

  • Letessier, T. B., D. W. Pond, R. A. R. McGill, W. D. K. Reid & A. S. Brierley, 2012. Trophic interaction of invertebrate zooplankton on either side of the Charlie Gibbs fracture zone/subpolar front of the mid-atlantic ridge. Journal of Marine Systems 94: 174–184.

    Article  Google Scholar 

  • Lorda, J. F., S. W. Fowler, J. C. Miquel, A. R. Baena & R. A. Jeffree, 2013. 210Po/210Pb dynamics in relation to zooplankton biomass and trophic conditions during an annual cycle in northwestern Mediterranean coastal waters. Journal of Environmental Radioactivity 115: 43–52.

    Article  Google Scholar 

  • Marques, S. C., M. A. Pardal, S. Mendes & U. M. Azeiteiro, 2011. Using multitable techniques for assessing the temporal variability of species–environment relationship in a copepod community from a temperate estuarine ecosystem. Journal of Experimental Marine Biology and Ecology 405: 59–67.

    Article  Google Scholar 

  • Mendes, S., M. J. F. Gomez, M. J. Pereira, U. M. Azeiteiro & M. P. Galindo-Villardon, 2010. The efficiency of the partial triadic analysis method: an ecological application. Biometrical Letters 47: 83–106.

    Google Scholar 

  • Mitchell, B. D. & M. C. Geddes, 1977. Distribution of the brine shrimps Parartemia zietziana Sayce and Artemia salina (L.) along a salinity and oxygen gradient in a South Australian saltfield. Freshwater Biology 7: 461–467.

    Article  CAS  Google Scholar 

  • Mozetiĉ, P., S. F. Umani, B. Cataletto & A. Malej, 1998. Seasonal and inter-annual plankton variability in the Gulf of Trieste (northern Adriatic). ICES Journal of Marine Science 55: 711–722.

    Article  Google Scholar 

  • O’Connell, J. L., L. A. Johnson, L. M. Smith, S. T. McMurry & D. A. Haukos, 2012. Influence of land-use and conservation programs on wetland plant communities of the semiarid United States Great Plains. Biological Conservation 146: 108–115.

    Article  Google Scholar 

  • Oren, A., 2001. The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466: 61–72.

    Article  CAS  Google Scholar 

  • Parsons, T. R. & J. D. H. Strickland, 1963. Discussion of spectrophotometric determination of marine plant pigments, with revised equations for ascertaining chlorophylls and carotenoids. Journal of Marine Research 21: 155–163.

    CAS  Google Scholar 

  • Rodríguez-Climent, S., N. Caiola & C. Ibáñez, 2013. Salinity as the main factor structuring small-bodied fish assemblages in hydrologically altered Mediterranean coastal lagoons. Scientia Marina 77: 37–45.

    Google Scholar 

  • Rose, M., 1933. Copépodes pélagiques. Faune de la France.

  • Sánchez, M. I., A. J. Green & E. M. Castellanos, 2006. Temporal and spatial variation of an aquatic invertebrate community subjected to avian predation at the Odiel salt pans (SW Spain). Archiv für Hydrobiologie 166: 199–223.

    Article  Google Scholar 

  • SCOR-UNESCO, 1966. Determination of Photosynthetic Pigments in Sea Water. SCOR-UNESCO, Paris.

  • Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.

    Article  Google Scholar 

  • Smith, L., N. Euliss, D. Wilcox & M. Brinson, 2008. Application of a geomorphic and temporal perspective to wetland management in North America. Wetlands 28: 563–577.

    Article  Google Scholar 

  • Smith, L. M., D. A. Haukos, S. T. Mcmurry, T. Lagrange & D. Willis, 2011. Ecosystem services provided by playas in the High Plains: potential influences of USDA conservation programs. Ecological Applications 21: S82–S92.

    Article  Google Scholar 

  • Tanguay, J. A., R. C. Reyes & J. S. Clegg, 2004. Habitat diversity and adaptation to environmental stress in encysted embryos of the crustacean Artemia. Journal of Biosciences 29: 489–501.

    Article  PubMed  Google Scholar 

  • Tezuka, Y., 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates. Microbial Ecology 19: 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Thiéry, A. & L. Puente, 2002. Crustacean assemblage and environmental characteristics of a man-made solar saltwork in southern France, with emphasis on anostracan (Branchiopoda) population dynamics. Hydrobiologia 486: 191–200.

    Article  Google Scholar 

  • Thioulouse, J., 2011. Simultaneous analysis of a sequence of paired ecological tables: a comparison of several methods. The Annals of Applied Statistics 5: 2300–2325.

    Article  Google Scholar 

  • Thioulouse, J. & D. Chessel, 1987. Les analyses multitableaux en écologie factorielle. I. De la typologie d’état à la typologie de fonctionnement par l’analyse triadiqu e. Acta Oecologica, Oecologia Generalis 8: 463–480.

    Google Scholar 

  • Thioulouse, J., M. Simier & D. Chessel, 2004. Simultaneous analysis of a sequence of paired ecological tables. Ecology 85: 272–283.

    Article  Google Scholar 

  • Torrentera, L. & S. I. Dodson, 2004. Ecology of the brine shrimp Artemia in the Yucatan, Mexico, Salterns. Journal of plankton research 26: 617–624.

    Article  Google Scholar 

  • Toumi, N., H. Ayadi, O. Abid, J. F. Carrias, T. Sime-Ngando, M. Boukhris & A. Bouaîn, 2005. Zooplankton distribution in four ponds of different salinity: a seasonal study in the solar salterns of Sfax (Tunisia). Hydrobiologia 534: 1–9.

    Article  Google Scholar 

  • Tripp, K. J. & J. A. Collazo, 2003. Density and distribution of water boatmen and brine shrimp at a major shorebird wintering area in Puerto Rico. Wetland Ecological Management 11: 331–341.

    Article  Google Scholar 

  • Vieira, N. & F. Amat, 1996. Fluctuation in the zooplankton community in two solar salt ponds, Aveiro, Portugal. International Journal of Salt Lake Research 4: 327–333.

    Article  Google Scholar 

  • Vieira, N. & A. Bio, 2011. Spatial and temporal variability of water quality and zooplankton in an artisanal salina. Journal of Sea Research 65: 293–303.

    Article  Google Scholar 

  • Willett, C. S. & R. S. Burton, 2002. Proline biosynthesis genes and their regulation under salinity stress in the euryhaline copepod Tigriopus californicus. Comparative Biochemistry and Physiology, Part B 132: 739–750.

    Article  Google Scholar 

  • Willett, C. S. & R. S. Burton, 2003. Characterization of the glutamate dehydrogenase gene and its regulation in a euryhaline copepod. Comparative Biochemistry and Physiology, Part B 135: 639–646.

    Article  Google Scholar 

  • Williams, D. D., 1980. Some relationships between stream benthos and substrate heterogeneity. Limnology and Oceanography 25: 166–172.

    Article  Google Scholar 

  • Williams, W. D., 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.

    Article  Google Scholar 

  • Wollheim, W. M. & J. R. Lovvorn, 1995. Salinity effects on macroinvertebrate assemblages and waterbird food webs in shallow lakes of the Wyoming High Plains. Hydrobiologia 310: 207–233.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jean THIOULOUSE for constructive and critical reading of the manuscript. We are grateful to the staff of the saline of Sfax. This study was conducted in the framework of the PhD of Chiraz Ladhar (University of Maine: Laboratoire Mer, Molécules, Santé, UFR Sciences et Techniques, France – University of Sfax: Unité de recherche UR/05ES05, Biodiversité et Ecosystème Aquatiques, Tunisia). Chiraz Ladhar was supported by the Tunisian Ministry of Higher Education.

Conflict of interest

All the authors of this article declare that no potential conflicts of interest are linked to the work described in this manuscript. They also declare not presenting financial, consulting, and personal relationships with other people or organizations that could influence the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Denis.

Additional information

Handling editor: Karl E. Havens

Chiraz Ladhar and Emmanuelle Tastard are first co-authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladhar, C., Tastard, E., Casse, N. et al. Strong and stable environmental structuring of the zooplankton communities in interconnected salt ponds. Hydrobiologia 743, 1–13 (2015). https://doi.org/10.1007/s10750-014-1998-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1998-y

Keywords

Navigation