Skip to main content
Log in

Effects of episodic turbulence on diatom mortality and physiology, with a protocol for the use of Evans Blue stain for live–dead determinations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Short-lived, high-intensity turbulence in aquatic environments—or episodic turbulence—has been shown to cause mortality in zooplankton, but its effects on marine phytoplankton have rarely been investigated. Episodic turbulence derives from anthropogenic and natural causes such as boat propellers, strong winds, and breaking waves. This study focused on the effects of episodic turbulence on two diatoms: Thalassiosira weissflogii and Skeletonema costatum. 45 s exposure to turbulence intensities above 2.5 cm2 s−3 reduced diatom abundance by up to 32% and increased the number of intact dead cells by 22%. After exposure to 4.0 cm2 s−3, photosynthetic efficiency decreased by 25 and 9% in T. weissflogii and S. costatum, respectively. Turbulence also caused extracellular release of optically reactive DOM and biologically important trace metals such as iron. The turbulence levels tested are comparable to those under breaking surface waves and are substantially lower than those generated by boat propellers. An improved technique using the Evans Blue stain was developed to enable visual live/dead plankton cell determinations. When used in conjunction with preservation and flow cytometry, this staining method provides a way to study phytoplankton mortality due to turbulence and other environmental stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. A. Hwang, A. J. Williams III, W. M. Drennan & K. K. Kahma, 1992. Enhanced dissipation of kinetic energy beneath surface waves. Nature 359: 219–220.

    Article  Google Scholar 

  • Arin, L., C. Marrasé, M. Maar, F. Peters, M. M. Sala & M. Alcaraz, 2002. Combined effects of nutrients and small-scale turbulence in a microcosm experiment. I. Dynamics and size-distribution of osmotrophic plankton. Aquatic Microbial Ecology 29: 51–61.

    Article  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

  • Beck, C. A., R. K. Bonde & G. B. Rathbun, 1982. Analyses of propeller wounds on manatees in Florida. The Journal of Wildlife Management 46: 531–535.

    Article  Google Scholar 

  • Bickel, S. L., K. W. Tang & H. P. Grossart, 2009. Use of aniline blue to distinguish live and dead crustacean zooplankton composition in freshwaters. Freshwater Biology 54: 971–981.

    Article  Google Scholar 

  • Bickel, S. L., J. D. Malloy Hammond & K. W. Tang, 2011. Boat-generated turbulence as a potential source of mortality among copepods. Journal of Experimental Marine Biology and Ecology 401: 105–109.

    Article  Google Scholar 

  • Brussaard, C. P. D., 2004. Viral control of phytoplankton populations – a review. The Journal of Eukaryotic Microbiology 51: 125–138.

    Article  PubMed  Google Scholar 

  • Buma, A. G. J., E. J. V. Hannen & M. J. W. Veldhuis, 1995. Monitoring Ultraviolet-B-induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection. Journal of Phycology 321: 314–321.

    Article  Google Scholar 

  • Cannon, A. C., 1998. Gross necropsy results of sea turtles stranded on the upper Texas and western Louisiana Coasts, 1 January–31 December 1994. In Zimmerman, R. (ed.), Characteristics and Causes of Texas Marine Strandings. NOAA Report NMFS 143, Seattle, WA: 81–85.

    Google Scholar 

  • Clarson, S. J., M. Steinitz-Kannan, S. V. Patwardhan, R. Kannan, R. Hartig, L. Schloesser & D. W. Hamilton, 2009. Some observations of diatoms under turbulence. Silicon 1: 79–90.

    Article  CAS  Google Scholar 

  • Coale, K. H. & K. W. Bruland, 1988. Copper complexation in the northeast Pacific. Limnology and Oceanography 33: 1084–1101.

    Article  CAS  Google Scholar 

  • Coble, P. G., 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry 51: 325–346.

    Article  CAS  Google Scholar 

  • Crippen, R. W. & J. L. Perrier, 1974. The use of neutral red stain and Evans Blue for live dead determinations on marine plankton with comments on the use of rotenone for inhibition of grazing. Stain Technology 40: 97–104.

    Google Scholar 

  • Cullen, J. J. & M. R. Lewis, 1988. The kinetics of algal photoadaptation in the context of vertical mixing. Journal of Plankton Research 10: 1039–1063.

    Article  Google Scholar 

  • Cullen, J. J., M. R. Lewis, C. O. Davis & R. T. Barber, 1992. Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific. Journal of Geophysical Research: Oceans 97: 639–654.

    Article  Google Scholar 

  • Cushing, D. H., 1989. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. Journal of Plankton Research 11: 1–13.

    Article  Google Scholar 

  • Danielsson, L., B. Magnusson & S. Westerlund, 1985. Cadmium, copper, iron, nickel and zinc in the North-East Atlantic Ocean. Marine Chemistry 17: 23–41.

    Article  CAS  Google Scholar 

  • Doney, S., V. J. Fabry, R. A. Feely & J. A. Kleypas, 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.

    Article  PubMed  Google Scholar 

  • Elliott, D. T. & K. W. Tang, 2009. Simple staining method for differentiating live and dead marine zooplankton in field samples. Limnology and Oceanography: Methods 7: 585–594.

    Google Scholar 

  • Estrada, M. & E. Berdalet, 1997. Phytoplankton in a turbulent world. Scientia Marina 61: 125–140.

    Google Scholar 

  • Fellman, J. B., E. Hood & R. G. M. Spencer, 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnology and Oceanography 55: 2452–2462.

    Article  CAS  Google Scholar 

  • Ferrari, G. M. & M. Mingazzini, 1995. Synchronous fluorescence spectra of dissolved organic matter (DOM) of algal origin in marine coastal waters. Marine Ecology Progress Series 125: 305–315.

  • Finkel, Z. V., A. Quigg, J. A. Raven, J. R. Reinfelder, O. E. Schofield & P. G. Falkowski, 2006. Irradiance and the elemental stoichiometry of marine phytoplankton. Limnology and Oceanography 51: 2690–2701.

    Article  CAS  Google Scholar 

  • Fisher, N. S. & M. Wente, 1992. The release of trace elements by dying marine phytoplankton. Deep Sea Research Part I: Oceanographic Research Papers 40: 671–694.

    Article  Google Scholar 

  • Gargett, A., 1989. Ocean turbulence. Annual Review of Fluid Mechanics 21: 419–451.

    Article  Google Scholar 

  • Gibson, C. H. & W. H. Thomas, 1995. Effects of turbulence intermittency on growth inhibition of a red tide dinoflagellate, Gonyaulax polyedra Stein. Journal of Geophysical Research 100: 24841–24846.

    Article  Google Scholar 

  • Ho, T., A. Quigg, V. Zoe, A. J. Milligan, P. G. Falkowski & M. M. Morel, 2003. The elemental composition of some marine phytoplankton. Journal of Phycology 39: 1145–1159.

    Article  CAS  Google Scholar 

  • Juneau, P. & P. J. Harrison, 2005. Comparison by PAM fluorometry of photosynthetic activity of nine marine phytoplankton grown under identical conditions. Photochemistry and photobiology 81: 649–653.

    Article  CAS  PubMed  Google Scholar 

  • Karl, T. R. & K. E. Trenberth, 2003. Modern global climate change. Science 302: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  • Killgore, K. J., A. C. Miller & K. C. Conley, 1987. Transactions of the American Fisheries Society effects of turbulence on yolk-sac larvae of paddlefish. Transactions of the American Fisheries Society 116: 37–41.

    Article  Google Scholar 

  • Kiørboe, T., 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29: 2–70.

    Google Scholar 

  • Legendre, L. & J. Le Fevre, 1995. Microbial food webs and the export of biogenic carbon in oceans. Aquatic Microbial Ecology 9: 69–77.

    Article  Google Scholar 

  • Lenz, J., A. Morales & J. Gunkel, 1992. Mesozooplankton standing stock during the North Atlantic spring bloom study in 1989 and its potential grazing pressure on phytoplankton: a comparison between low, medium and high latitudes. Deep-Sea Research 40: 559–572.

    Article  Google Scholar 

  • Lewis, M. R., E. P. W. Horne, J. J. Cullen, N. S. Oakey & T. Platt, 1984. Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311: 49–50.

    Article  CAS  Google Scholar 

  • Li, Y. H. & S. Gregory, 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta 88: 703–714.

    Google Scholar 

  • Libby, P. A., 1996. Introduction to Turbulence. Taylor & Francis Ltd, Washington DC: 267–275.

    Google Scholar 

  • Llabrés, M. & S. Agustí, 2006. Picophytoplankton cell death induced by UV radiation: evidence for oceanic Atlantic communities. Limnology and Oceanography 51: 21–29.

    Article  Google Scholar 

  • Loberto, A. 2007. An Experimental Study of the Mixing Performance of Boat Propeller. M.E. Thesis, Queensland University of Technology.

  • MacKenzie, B. R. & W. C. Leggett, 1991. Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide. Marine Ecology Progress Series 73: 149–160.

    Article  Google Scholar 

  • Mague, T. H., E. Friberg, D. J. Hughes & I. Morris, 1980. Extracellular release of carbon by marine phytoplankton; physiological approach. Limnology and Oceanography 25: 262–279.

    Article  CAS  Google Scholar 

  • Malits, A., F. Peters, M. Bayer-Giraldi, C. Marrasé, A. Zoppini, O. Guadayol & M. Alcaraz, 2004. Effects of small-scale turbulence on bacteria: a matter of size. Microbial Ecology 48: 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Margalef, R., 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.

    Google Scholar 

  • Matthews, B. J. H., A. C. Jones, N. K. Theodorou & A. W. Tudhope, 1996. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry 55: 317–332.

    Article  CAS  Google Scholar 

  • Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns & P. Whetton, 2000. Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81: 427–436.

    Article  Google Scholar 

  • Melville, W. K., 1994. Energy dissipation by breaking waves. Journal of Physical Oceanography 24: 2041–2049.

    Article  Google Scholar 

  • Michaels, A. F. & M. W. Silver, 1988. Primary production, sinking fluxes, and the microbial food web. Deep-Sea Research 35: 473.

    Article  Google Scholar 

  • Morgan, R., R. E. Ulanowicz, V. J. Rasin, L. A. Noe & G. B. Gray, 1976. Effects of shear on eggs and larvae of striped bass, Morone saxatilis, and white perch, M. americana. Transactions of the American Fisheries Society 105: 37–41.

    Article  Google Scholar 

  • Myklestad, S., O. Holm-hansen & K. M. Varum, 1989. Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. Journal of Plankton Research 11: 763–773.

    Article  CAS  Google Scholar 

  • Nuester, J., S. Vogt & B. S. Twining, 2012. Localization of iron within centric diatoms of the genus Thalassiosira. Journal of Phycology 48: 626–634.

    Article  CAS  Google Scholar 

  • Odeh, M., J. F. Noreika, A. Haro, A. Maynard, T. Castro-Santos & G. F. Cada. 2002. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish, Portland, OR: 1–37.

  • Osborn, T. R., 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography 10: 83–89.

    Article  Google Scholar 

  • Peters, F. & C. Marrasé, 2000. Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations. Marine Ecology Progress Series 205: 291–306.

    Article  Google Scholar 

  • Pett, R. J., 1989. Kinetics of microbial mineralization of organic carbon from detrital Skeletonema costatum. Marine Ecology Progress Series 52: 123–128.

    Article  CAS  Google Scholar 

  • Saito, M. A. & J. W. Moffett, 2002. Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochimica et Cosmochimica Acta 66: 1943–1953.

    Article  CAS  Google Scholar 

  • Saria, A. & A. M. Lundberg, 1983. Evans Blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. Journal of Neuroscience Methods 8: 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Stedmon, C. A., S. Markager & R. Bro, 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82: 239–254.

  • Sullivan, J. M. & E. Swift, 2003. Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates. Journal of Phycology 94: 83–94.

    Article  Google Scholar 

  • Sunda, W. G., N. M. Price & F. M. M. Morel, 2005. Trace metal ion buffers and their use in culture studies. In Anderson, R. A. (ed.), Algal Culturing Techniques. Academic Press, Burlington, MA: 35–63.

    Google Scholar 

  • Suttle, C. A., A. M. Chan & M. T. Cottrell, 1990. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347: 467–469.

    Article  Google Scholar 

  • Tang, D. & F. M. M. Morel, 2006. Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry 98: 18–30.

    Article  CAS  Google Scholar 

  • Tennekes, H. H. & J. L. Lumley, 1972. A First Course in Turbulence. MIT Press, Cambridge, MA.

    Google Scholar 

  • Terray, E. A., M. A. Donelan, Y. C. Agrawal, W. M. Drennan, K. K. Kahma, A. J. Williams III & P. A. Hwang, 1996. Estimates of kinetic energy dissipation under breaking waves. Journal of Physical Oceanography 26: 792–807.

    Article  Google Scholar 

  • Thomas, W. H. & C. H. Gibson, 1990. Effects of small-scale turbulence on microalgae. Journal of Applied Phycology 2: 71–77.

    Article  Google Scholar 

  • Thomas, W. H., P. M. Vernet & C. H. Gibson, 1995. Effects of small-scale turbulence on photosynthesis, pigmentation, cell division, and cell size in the marine dinoflagellate Gonyaulax polyedra (Dinophyceae). Journal of Phycology 31: 50–59.

    Article  Google Scholar 

  • Tovar-Sanchez, A., S. A. Sanudo-Wilhelmy, M. Garcia-Vargas, R. S. Weaver, L. C. Popels & D. A. Hutchins, 2003. A trace metal clean reagent to remove surface-bound Fe from marine phytoplankton. Marine Chemistry 82: 91–99.

    Article  CAS  Google Scholar 

  • Twining, B. S. & S. B. Baines, 2013. The trace metal composition of marine phytoplankton. Annual Review of Marine Science 5: 191–215.

    Article  PubMed  Google Scholar 

  • Tynan, C. T. 1993. Effects of Small-Scale Turbulence on Dinoflagellates. Ph.D. Thesis, Scripps Institution of Oceanography, University of California, San Diego.

  • Veldhuis, M. J. W. & G. W. Kraay, 2000. Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Scientia Marina 64: 121–134.

    Article  Google Scholar 

  • Watt, W. D., 1969. Extracellular release of organic matter from two freshwater diatoms. Annals of Botany 33: 427–437.

    CAS  Google Scholar 

  • Yentsch, C. M. & J. W. Campbell, 1991. Phytoplankton growth: perspectives gained by flow cytometry. Journal of Plankton Research 13: S83–S108.

    Article  Google Scholar 

  • Zetsche, E. M. & F. J. R. Meysman, 2012. Dead or alive? Viability assessment of micro- and mesoplankton. Journal of Plankton Research 34: 493–509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for lending their equipment and expertise: Dr. C.T. Friedrichs, Dr. G.M. Cartwright, Dr. W.O. Smith, Jr., and Dr. A.J. Beck, and the following for their input and support: S. Bickel, Y. Dong, J. Ivory, and S. Peng. This paper is Contribution No. 3371 of the Virginia Institute of Marine Science, College of William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haley S. Garrison.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2014_1927_MOESM1_ESM.docx

Online Resource—Supplementary Figure: Live and dead Thalassiosira weissflogii cells treated with EB, rinsed, and viewed on a Sedgewick-Rafter counting cell (DOCX 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrison, H.S., Tang, K.W. Effects of episodic turbulence on diatom mortality and physiology, with a protocol for the use of Evans Blue stain for live–dead determinations. Hydrobiologia 738, 155–170 (2014). https://doi.org/10.1007/s10750-014-1927-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1927-0

Keywords

Navigation