Skip to main content

Advertisement

Log in

Temporal changes in essential fatty acid availability in different food sources in the littoral macrophyte zone

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In littoral environments, different food resources are available for zooplankters. In addition to seston, species may feed on biofilms growing on sediments, plants (epiphyton), and at the air–water interface (neuston). However, despite a growing interest in these different biofilms, little is known about their food quality for microcrustaceans. In a field study, we measured changes in the food quality over time in terms of the essential fatty acid (EFA) content of different potential food sources for littoral consumers. The food quality of seston, neuston, and epiphyton growing on three different aquatic macrophytes were assessed. Our results showed that there is an important seasonal variability within each food source. However, in the system studied, epiphytic biofilms, especially those of Ludwigia and Callitriche offered the highest food quality, in terms of EFA content, throughout the year. As the highest EFA concentrations in each food source were found consecutively, high concentrations of these physiologically important compounds are maintained in the system throughout the year. Therefore, greater diversity of food resources could affect ecosystem productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agogué, H., E. O. Casamayor, F. Joux, I. Obernosterer, C. Dupuy, F. Lantoine, P. Catala, M. G. Weinbauer, T. Reinthaler, G. J. Herndl & P. Lebaron, 2004. Comparison of samplers for the biological characterization of the sea surface microlayer. Limnology and Oceanography: Methods 2: 213–225.

    Article  Google Scholar 

  • Ahlgren, G., L. Lundstedt, M. T. Brett & C. Forsberg, 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research 12: 809–818.

    Article  CAS  Google Scholar 

  • Arts, M. T., R. G. Ackman & B. J. Holub, 2001. “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Canadian Journal of Fisheries and Aquatic Sciences 58: 122–137.

    Article  CAS  Google Scholar 

  • Bec, A., C. Desvilettes, A. Vera, D. Fontvieille & G. Bourdier, 2003. Nutritional value of different food sources for the benthic Daphnidae Simocephaius vetulus: role of fatty acids. Archiv fur Hydrobiologie 156: 145–163.

    Article  CAS  Google Scholar 

  • Bec, A., D. Martin-Creuzburg & E. von Elert, 2006. Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnology and Oceanography 51: 1699–1707.

    Article  Google Scholar 

  • Bec, A., M. E. Perga, C. Desvilettes & G. Bourdier, 2010. How well can the fatty acid content of lake seston be predicted from its taxonomic composition? Freshwater Biology 55: 1958–1972.

    Article  CAS  Google Scholar 

  • Bowker, D. W., W. van Teutem & J. C. Fry, 1986. A note on ‘stomaching’ for the quantitative sampling of epiphyton. Freshwater Biology 16: 123–125.

    Article  Google Scholar 

  • Brett, M. T. & D. C. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic food web processes. Freshwater Biology 38: 483–499.

    Article  CAS  Google Scholar 

  • Burchardt, L. & H. G. Marshall, 2003. Algal composition and abundance in the neuston surface micro layer from a lake and pond in Virginia (U.S.A.). Journal of Limnology 62: 139–142.

    Article  Google Scholar 

  • Burns, C. W., 1968. Relationship between body size of filter-feeding Cladocera and maximum size of particle ingested. Limnology and Oceanography 13: 675–678.

  • Cazzanelli, M., L. Forsstrom, M. Rautio, A. Michelsen & K. S. Christoffersen, 2012. Benthic resources are the key to Daphnia middendorffiana survival in a high arctic pond. Freshwater Biology 57: 541–551.

    Article  CAS  Google Scholar 

  • Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–358.

    Article  Google Scholar 

  • Christie, W. W., 1982. Lipid Analyses, 2nd ed. Pergamon, Oxford.

    Google Scholar 

  • Copeman, L. A., C. C. Parrish, J. A. Brown & M. Harel, 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210: 285–304.

    Article  CAS  Google Scholar 

  • Delong, M. D. & J. H. Thorp, 2006. Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147: 76–85.

    Article  PubMed  Google Scholar 

  • Desvilettes, C. & A. Bec, 2009. Formation and transfer of fatty acids in aquatic microbial food webs: role of heterotrophic protists. In Arts, M. T., M. T. Brett & M. J. Kainz (eds.), Lipids in Freshwater Ecosystems. Springer, New York: 25–42.

    Chapter  Google Scholar 

  • Dumont, H. J. & J. Pensaert, 1983. A revision of the Scapholeberinae (Crustacea Cladocera). Hydrobiologia 100: 3–45.

    Article  Google Scholar 

  • Farkas, T., G. Y. Nemecz & I. Csengeri, 1984. Differential response of lipid metabolism and membrane physical state by an actively and passively overwintering planktonic crustacean. Lipids 19: 436–442.

    Article  CAS  Google Scholar 

  • Folch, J., M. Less & G. Stanley, 1957. A simple method for the isolation of and purification of total fatty acids from an animal tissues. The Journal of Biological Chemistry 226: 497–509.

    CAS  PubMed  Google Scholar 

  • Gladyshev, M. I., N. N. Sushchik, O. P. Dubovskaya, O. N. Makhutova & G. S. Kalachova, 2008. Growth rate of Daphnia feeding on seston in a Siberian reservoir: the role of essential fatty acid. Aquatic Ecology 42: 617–627.

    Article  CAS  Google Scholar 

  • Herwig, B. R., D. A. Soluk, J. M. Dettmers & D. H. Wahl, 2004. Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences 61: 12–22.

    Article  CAS  Google Scholar 

  • Hill, W. R., J. Rinchard & S. Czesny, 2011. Light, nutrients and the fatty acid composition of stream periphyton. Freshwater Biology 56: 1825–1836.

    Article  CAS  Google Scholar 

  • Hortnagl, P., M. T. Perez, M. Zeder & R. Sommaruga, 2010. The bacterial community composition of the surface microlayer in a high mountain lake. FEMS Microbiology Ecology 73: 458–467.

    PubMed Central  PubMed  Google Scholar 

  • Karosienė, J. & J. Kasperovičienė, 2008. Seasonal succession of epiphyton algal communities on Phragmites australis (Cav.) Trin. ex Stend. in a mesoeutrophic lake. Ekologija 54: 32–39.

    Article  Google Scholar 

  • Koussoroplis, A. M., A. Bec, M. E. Perga, E. Koutrakis, C. Desvilettes & G. Bourdier, 2010. Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid delta C-13 analysis. Marine Ecology Progress Series 404: 207–217.

    Article  CAS  Google Scholar 

  • Leland, H. V., V. F. Steven, L. C. James & A. D. Mahood, 1986. Composition and abundance of periphyton and aquatic insects in a sierra navada stream. Great Basin Naturalist 46: 595–611.

    Google Scholar 

  • Levine, J. M. & J. HilleRisLambers, 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2009. Periphyton biomass, potential production and respiration in a shallow lake during winter and spring. Hydrobiologia 632: 201–210.

    Article  Google Scholar 

  • Maazouzi, C., G. Masson, M. S. Izquierdo & J. C. Pihan, 2008. Midsummer heat wave effects on lacustrine plankton: variation of assemblage structure and fatty acid composition. Journal of Thermal Biology 33: 287–296.

    Article  CAS  Google Scholar 

  • Mariash, H., M. Cazzanelli, M. J. Kainz & M. Rautio, 2011. Food sources and lipid retention of zooplankton in subarctic ponds. Freshwater Biology 56: 1850–1862.

    Article  CAS  Google Scholar 

  • Masclaux, H., A. Bec, M. J. Kainz, C. Desvilettes, L. Jouve & G. Bourdier, 2009. Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. Limnology and Oceanography 54: 1323–1332.

    Article  Google Scholar 

  • Masclaux, H., A. Bec & G. Bourdier, 2012a. Trophic partitioning among three littoral microcrustaceans: relative importance of periphyton as food resource. Journal of Limnology 71: 30–35.

    Article  Google Scholar 

  • Masclaux, H., A. Bec, M. J. Kainz, F. Perrière, C. Desvilettes & G. Bourdier, 2012b. Accumulation of polyunsaturated fatty acids by cladocerans: effects of taxonomy, temperature and food. Freshwater Biology 57: 696–703.

    Article  CAS  Google Scholar 

  • Masclaux, H., M. E. Perga, M. Kagami, C. Desvilettes, G. Bourdier & A. Bec, 2013. How pollen organic matter enters freshwater food webs. Limnology and Oceanography 58: 1185–1195.

    CAS  Google Scholar 

  • Masclaux, H., G. Bourdier, P. Riera, M. J. Kainz, L. Jouve, E. Duffaud & A. Bec, 2014. Resource partitioning among cladocerans in a littoral macrophyte zone: implications for the transfer of essential compounds. Aquatic Sciences 76: 73–81.

    Article  CAS  Google Scholar 

  • Müller-Navarra, D. C., 1995. Biochemical versus mineral limitation in Daphnia. Limnology and Oceanography 40: 1209–1214.

    Article  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, A. M. Liston & C. R. Goldman, 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74–77.

    Article  PubMed  Google Scholar 

  • Müller-Navarra, D. C., M. T. Brett, S. Park, S. Chandra, A. P. Ballantyne, E. Zorita & C. R. Goldman, 2004. Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427: 69–72.

    Article  PubMed  Google Scholar 

  • Müller-Solger, A. B., A. D. Jassby & D. Müller-Navarra, 2002. Nutritional quality of food resources for zooplankton (Daphnia) in a tidal freshwater system (Sacramento–San Joaquin River Delta). Limnology and Oceanography 47: 1468–1476.

    Article  Google Scholar 

  • Parrish, C., 2009. Essential fatty acids in aquatic food webs. In Arts, M. T., M. T. Brett & M. J. Kainz (eds.), Lipids in Aquatic Ecosystems. Springer, New York: 309–326.

    Chapter  Google Scholar 

  • Rautio, M. & F. V. Warwick, 2006. Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology 51: 1038–1052.

    Article  CAS  Google Scholar 

  • Ravet, J. L., M. T. Brett & D. C. Müller-Navarra, 2003. A test of the role of polyunsaturated fatty acids in phytoplankton food quality for Daphnia using liposome supplementation. Limnology and Oceanography 48: 1938–1947.

    Article  CAS  Google Scholar 

  • Ravet, J. L., J. Persson & M. T. Brett, 2012. Threshold dietary polyunsaturated fatty acid concentrations for Daphnia pulex growth and reproduction. Inland Waters 2: 199–209.

    Article  Google Scholar 

  • Sargent, J., G. Bell, L. McEvoy, D. Tocher & A. Estevez, 1999. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177: 191–199.

    Article  CAS  Google Scholar 

  • Schlechtriem, C., M. T. Arts & I. D. Zellmer, 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (crustacea, cladocera). Lipids 41: 397–400.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz, G. & J. Ecker, 2008. The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research 47: 147–155.

    Article  CAS  PubMed  Google Scholar 

  • Sperfeld, E. & A. Wacker, 2012. Temperature affects the limitation of Daphnia magna by eicosapentaenoic acid, and the fatty acid composition of body tissue and eggs. Freshwater Biology 57(3): 497–508.

    Article  CAS  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H. H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • van de Bund, W. J., O. E. Krips & C. Davids, 1994. Potential food sources for littoral meiobenthos: culture experiments with Chydorus piger. In van de Bund, W. J. (ed.), Food Web Relations of Littoral Macro- and Meiobenthos. Amsterdam: 69–78.

  • Vymazal, J. & C. J. Richardson, 1995. Species composition, biomass, and nutrient content of periphyton in the florida everglades. Journal of Phycology 31: 343–354.

    Article  Google Scholar 

  • Wacker, A. & E. von Elert, 2001. Polyunsaturated fatty acids: evidence for non-substitutable biochemical resources in Daphnia galeata. Ecology Letters 82: 2507–2520.

    Article  Google Scholar 

  • Walseng, B., D. O. Hessen, G. Halvorsen & A. K. Schartau, 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography 51: 2600–2606.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the French ministry of education and research and the Rivière Allier PPF research program. We thank Bernadette Hubbart for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Masclaux.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masclaux, H., Bourdier, G., Jouve, L. et al. Temporal changes in essential fatty acid availability in different food sources in the littoral macrophyte zone. Hydrobiologia 736, 127–137 (2014). https://doi.org/10.1007/s10750-014-1898-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1898-1

Keywords

Navigation