Skip to main content
Log in

Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Interstitial annelids in the family Saccocirridae live in the extremely turbulent and dynamic swash zone of exposed sandy beaches. We examine herein the relationship between distribution patterns of Saccocirrus pussicus du Bois-Reymond Marcus 1948 and morphodynamics, hydrodynamic zones, and environmental variables at beaches sampled along the Brazilian Atlantic coast. The occurrence and the abundance of S. pussicus at regional scale were positively correlated with the presence of a steep slope, large waves and coarse sand, which are characteristic of reflective beaches. On a local scale, S. pussicus occurred at the swash zone and breaking surf zone of reflective beaches. On a microscale, it preferred the upper 20 cm of the swash zone sediment. Saccocirrus pussicus prefers hydrodynamic zones, which change temporally, suggesting dependence with the dynamics of the surging and plunging waves. The coupling of morphological and behavioral adaptations of S. pussicus to beach morphodynamics is crucial for understanding its surfing life strategies within turbulent environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aagaard, T. & G. Masselink, 1999. The surf zone. In Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons Ltd, Chichester: 72–113.

    Google Scholar 

  • Aiyar, G. & K. H. Alikunhi, 1944. On some archiannelids of Madras coast. Proceedings of the National Institute of Sciences of India 10(1): 113–139.

    Google Scholar 

  • Alves, J. H. G. M. & E. Melo, 2001. Measurement and modeling of wind waves at the northern coast of Santa Catarina, Brazil. Brazilian Journal of Oceanography 49(1/2): 13–28.

    Google Scholar 

  • Armenante, Z., 1903. Protodrilus hypoleucus n. sp. Monitore Zoologico Italiano 14: 221–222.

    Google Scholar 

  • Barros, F., C. A. Borzone & S. Rosso, 2001. Macroinfauna of six beaches near Guaratuba bay, Southern Brazil. Brazilian Archives of Biology and Technology 44: 351–364.

    Article  Google Scholar 

  • Battjes, J. A., 1974. Surf similarity. In Proceedings of 14th Coastal Engineering Conference, Copenhagen, Denmark. American Society of Civil Engineers, New York: 466–480.

  • Bauer, B. O. & J. R. Allen, 1995. Beach steps: an evolutionary perspective. Marine Geology 123: 143–166.

    Article  Google Scholar 

  • Boaden, P. J. S., 1962. Colonization of graded sand by an interstitial fauna. Cahiers de Biologie Marine 3: 245–248.

    Google Scholar 

  • Boaden, P. J. S., 1968. Water movement—a dominant factor in interstitial ecology. Sarsia 34: 125–136.

    Google Scholar 

  • Bobretzky, N., 1872. Saccocirrus papillocercus gen. nov. sp. nov. (in Russian). Mémoire S des Naturalistes de Kiev 2: 211–259.

    Google Scholar 

  • Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens & J.-S. S. White, 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24: 127–135.

    Article  Google Scholar 

  • Borzone, C. A., J. R. B. Souza & A. G. Soares, 1996. Morphodynamic influence on the structure of inter and subtidal macrofaunal communities of subtropical sandy beaches. Revista Chilena Historia Natural 69: 565–577.

    Google Scholar 

  • Brown, R., 1981. Saccocirridae (Annelida: Polychaeta) from the central coast of New South Wales. Australian Journal of Marine and Freshwater Research 32: 439–456.

    Article  Google Scholar 

  • Brown, A. C., J. M. E. Stenton-Dozey & E. R. Trueman, 1989. Sandy beach bivalves and gastropods: a comparison between Donax serra and Bullia digitalis. Advances in Marine Biology 25: 179–247.

    Article  Google Scholar 

  • Buchanan, J. B., 1984. Sediment analysis. In Holme, N. A. & A. D. McIntyre (eds.), Methods for the Study of Marine Benthos. Blackwell Scientific Publications, Boston: 41–65.

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practice Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Butt, T., P. Russell & I. L. Turner, 2001. The influence of swash infiltration–exfiltration on beach face sediment transport: onshore or offshore? Coastal Engineering 42(1): 35–52.

    Article  Google Scholar 

  • Camargo, M. G., 2006. Sysgran: um sistema de código aberto para análises granulométricas do sedimento. Revista Brasileira de Geociências 36(2): 371–378.

    Google Scholar 

  • Caputo, H. P., 1980. Mecânica de solos e suas aplicações. Editora Livros Técnicos e Científicos, Rio de Janeiro.

    Google Scholar 

  • Carvalho, J. L. B., A. H. F. Klein, C. A. F. Schettini & P. M. Jabor, 1996. Marés meteorológicas em Santa Catarina: influência do vento na determinação de parâmetros de projetos para obras costeiras. In Proc 3th Simpósio sobre Oceanografia, São Paulo: 380.

  • Dauer, D. M., C. A. Maybury & R. M. Ewing, 1981. Feeding behaviour and general ecology of several spionid polychaetes from the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 54: 21–38.

    Article  Google Scholar 

  • Dean, R. G., 1973. Heuristic models of sand transport in the surf zone. In Conferences on Engineering Dynamics in the Surf Zone. Sydney, NSW, Proceeding: 208–214.

  • Defeo, O. & A. McLachlan, 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna. Marine Ecology Progress Series 295: 1–20.

    Article  Google Scholar 

  • Di Domenico, M., A. Martínez, C. Amaral, P.C. Lana & K. Worsaae, 2014a. Saccocirridae (Annelida) from the southern and southeastern Brazilian coasts. Marine Biodiversity. http://dx.doi.org/10.1007/s12526-014-0208-5.

  • Di Domenico, M., A. Martínez, P. C. Lana & K. Worsaae, 2014b. Molecular and morphological phylogeny of Saccocirridae (Annelida) reveals two cosmopolitan clades with specific habitat preferences. Molecular Phylogenetics and Evolution. http://dx.doi.org/10.1016/j.ympev.2014.02.003.

  • Di Domenico, M., P. C. Lana & A. R. S. Garraffoni, 2009. Distribution patterns of interstitial polychaetes in sandy beaches of southern Brazil. Marine Ecology 30: 47–62.

    Article  Google Scholar 

  • Di Domenico, M., A. Martínez, P. C. Lana & K. Worsaae, 2013. Protodrilus (Protodrilidae, Annelida) from the southern and southeastern Brazilian coasts. Helgoland Marine Research 67: 733–748.

    Article  Google Scholar 

  • du Bois-Reymond Marcus, E., 1948. Further archiannelids from Brazil. Comunicaciones Zoologicas del Museu de Historia Natural de Montevideo 2: 69–83.

    Google Scholar 

  • Dugan, J. E., D. M. Hubbard & M. Lastra, 2000. Burrowing abilities and swash behavior of three crabs, Emerita analoga Stimpson, Blepharipoda occidentalis Randall, and Lepidopa californica Efiford (Anomura, Hippoidea), of exposed sandy beaches. Journal of Experimental Marine Biology and Ecology 255: 229–245.

    Article  PubMed  Google Scholar 

  • Ellers, O., 1995. Form and motion of Donax variabilis in flow. Biological Bulletin 189: 138–147.

    Article  Google Scholar 

  • Faria, J. C. & C. G. B. Demétrio, 2013. bpca: Biplot of Multivariate Data Based on Principal Components Analysis. ESALQ, USP, Brasil.

    Google Scholar 

  • Foy, M. S. & D. Thistle, 1991. On vertical distribution of a benthic harpacticoid copepod: field, laboratory, and flume results. Journal of Experimental Marine Biology and Ecology 153: 153–164.

    Article  Google Scholar 

  • Gelder, S. R. & R. F. Uglow, 1973. Feeding and gut structure in Nerilla antennata (Annelida: Archiannelida). Journal of Zoology 171: 225–237.

    Article  Google Scholar 

  • Giere, O., 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Springer, Heidelberg.

    Google Scholar 

  • Gilbert, E. R., M. G. Camargo & L. Sandrini-Neto, 2012. rysgran: Grain Size Analysis, Textural Classifications and Distribution of Unconsolidated Sediments. R package version 2.0. http://CRAN.R-project.org/package=rysgran.

  • Guza, R. T. & D. L. Inman, 1975. Edge waves and beach cusps. Journal of Geophysical Research 80: 2997–3012.

    Article  Google Scholar 

  • Higgins, R. P. & H. Thiel, 1988. Introduction to the Study of Meiofauna. Smithsonian Institution Press, Washington DC, London.

    Google Scholar 

  • Hoefel, F. G. & S. Elgar, 2003. Wave-induced sediment transport and sandbar migration. Science 299: 1885–1887.

    Article  CAS  PubMed  Google Scholar 

  • Horn, D. P. & T. Manson, 1994. Swash zone sediment transport modes. Marine Geology 120: 309–325.

    Article  Google Scholar 

  • Jackson, D. W. T., J. A. G. Cooper & L. Del Rio, 2005. Geological control of beach morphodynamic state. Marine Geology 216: 297–314.

    Article  Google Scholar 

  • Jesus, B., C. Mendes, V. Brotas & D. M. Paterson, 2006. Effect of sediment type on microphytobenthos vertical distribution: modelling the productive biomass and improving ground truth measurements. Journal of Experimental Marine Biology and Ecology 332(1): 60–74.

    Article  Google Scholar 

  • Jouin, C., 1970. Recherches sur les Archiannélides interstitielles: Systématique, anatomie et développement des Protodrilidae et des Nerillidae. Thèse Doctorat, Faculté des Sciences des Paris, Paris.

  • Jouin, C. & C. Gambi, 2007. Description of Saccocirrus goodrichi sp. nov. (Annelida: Polychaeta: Saccocirridae), a new Mediterranean species and new data on the chaetae of S. papillocercus and S. major. Cahiers de Biologie Marine 48: 381–390.

  • Jumars, P. A. & R. F. L. Self, 1986. Gut-marker and gut-fullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit feeders. Journal of Experimental Marine Biology and Ecology 98: 293–310.

    Article  Google Scholar 

  • Kihslinger, R. L. & S. A. Woodin, 2000. Food patches and a surface deposit feeding spionid polychaete. Marine Ecology Progress Series 201: 233–239.

    Article  Google Scholar 

  • Klein, A. H. F. & J. T. Menezes, 2001. Beach morphodynamics and profile sequence for a headland bay coast. Journal of Coastal Research 17(4): 812–835.

    Google Scholar 

  • Komar, P. D., 1998. Beach Processes and Sedimentation. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kovach, W. L., 1998. MVSP—A Multivariate Statistical Package for Windows, Ver. 3.0. Kovach Computing Services, Pentraeth, Wales.

    Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophylls and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Martin, G. G., 1977. Saccocirrus sonomacus sp. nov., a new archiannelid from California. Transactions of the American Microscopical Society 96: 97–103.

    Article  Google Scholar 

  • Martínez, A., M. Di Domenico, K. Jörger, J. L. Norenburg & K. Worsaae, 2013a. Description of three new species of Protodrilus (Annelida, Protodrilidae) from Central America. Marine Biology Research 9(7): 676–691.

    Article  Google Scholar 

  • Martínez, A., M. Di Domenico & K. Worsaae, 2013b. Gain of palps within a lineage of ancestrally burrowing annelids (Scalibregmatidae). Acta Zoologica. doi:10.1111/azo.12039.

    Google Scholar 

  • Martínez, A., M. Di Domenico & K. Worsaae, 2013c. Evolution of cave Axiokebuita and Speleobregma (Scalibregmatidae, Annelida). Zoologica Scripta 42(6): 623–636.

    Google Scholar 

  • Masselink, G. & J. A. Puleo, 2006. Swash zone morphodynamics. Continental Shelf Research 26: 661–680.

    Article  Google Scholar 

  • Masselink, G. & A. D. Short, 1993. The effects of tide range on beach morphodynamics and morphology: a conceptual beach model. Journal of Coastal Research 9: 785–800.

    Google Scholar 

  • Masselink, G. & I. L. Turner, 1999. The effect of tides on beach morphodynamics. In: Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. Wiley, Chichester: 204–229.

  • McCammon, R. B., 1962. Efficiencies of percentile measurements for describing the mean size and sorting of sedimentary particles. Journal of Geology 70: 453–465.

    Article  Google Scholar 

  • McLachlan, A. & A. C. Brown, 2006. The Ecology of Sandy Shores. Academy Press, New York, NY.

    Google Scholar 

  • Meineke, T. & W. Westheide, 1979. Gezeitenabhängige Wanderungen der Interstitialfauna in einem Sandstrand der Insel Sylt (Nordsee). Mikro Meeres 75: 1–36.

    Google Scholar 

  • Miller, D. C., M. J. Bock & E. J. Turner, 1992. Deposit and suspension feeding in oscillatory flows and sediment fluxes. Journal of Marine Research 50(3): 489–520.

    Article  Google Scholar 

  • Palmer, M. A., 1988. Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Marine Ecology Progress Series 48: 81–91.

    Article  Google Scholar 

  • Pardo, E. V. & A. C. Z. Amaral, 2004. Feeding behaviour of Scolelepis sp. (Polychaeta: Spionidae). Brazilian Journal of Oceanography 52: 74–79.

    Article  Google Scholar 

  • Pettermann, R. M., A. H. Amin Jr, A. C. Beaumord & L. Strefling, 2006. Geology, Southern Brazil. Journal of Coastal Research 39: 970–975.

    Google Scholar 

  • Pierantoni, U., 1907. Il genere Saccocirrus Bobretzky e le sue specie. Annuario dell’Instituto e Museo di Zoologia di Napoli 2: 1–11.

    Google Scholar 

  • Purschke, G., 1993. Structure of the prostomial appendages and the central nervous system in the Protodrilida (Polychaeta). Zoomorphology 113: 1–20.

    Article  Google Scholar 

  • R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  • Ramey, P. A. & E. Bodnar, 2008. Active post-settlement selection by a deposit-feeding polychaete, Polygordius jouinae, for sands with relatively high organic content. Limnology and Oceanography 54: 1512–1520.

    Article  Google Scholar 

  • Rodriguez, J. M., 2004. Intertidal water column meiofauna in relation to wave intensity on an exposed beach. Scientia Marina 68(1): 181–187.

    Google Scholar 

  • Rodriguez, M., N. Venturini, M. Di Domenico, A. G. Martinez & K. Worsaae, 2013. First occurrence of the interstitial polychaete Saccocirrus pussicus in exposed beaches of Uruguay. Pan-American Journal Aquatic Science 8(3): 194–198.

    Google Scholar 

  • Sandrini-Neto, L. & M. G. Camargo, 2010. GAD (General ANOVA Design): An R Package for ANOVA Designs from the General Principles. Available on CRAN.

  • Sasaki, S., 1981. A new species of the genus Saccocirrus (Archiannelida) from Hokkaido, Northern Japan. Annotationes Zoologica Japonenses 54: 259–266.

    Google Scholar 

  • Sasaki, S. & R. Brown, 1983. Larval development of Saccocirrus uchidai from Hokkaido, Japan and Saccocirrus krusadensis from New South Wales, Australia (Archiannelida, Saccocirridae). Annotationes Zoologica Japonenses 56: 299–314.

    Google Scholar 

  • Schettini, C. A. F., J. L. Carvalho & E. Truccolo, 1999. Aspectos hidrodinâmicos da enseada da Armação de Itapocoroy, SC. Notas Técnicas da FACIMAR 3: 99–109.

    Google Scholar 

  • Short, A. D. & P. A. Hesp, 1999. Beach ecology. In Short, A. D. (ed.), Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons Ltd, London: 271–278.

    Google Scholar 

  • Skaug, H., D. Fournier, A. Nielsen, A. Magnusson & B. Bolker, 2011. glmmADMB: Generalized Linear Mixed Models Using AD Model Builder. R Package, Version 0.7. http://glmmadmb.r-forge.r-project.org, http://admb-project.org.

  • Somerfield, P. J., R. M. Warwick & T. Moens, 2005. Meiofauna techniques. In Eleftheriou, A. & A. Mcintyre (eds), Methods for Study of Marine Benthos. Blackwell Publishing, Oxford: 229–272.

    Chapter  Google Scholar 

  • Taghon, G. L. & R. R. Greene, 1992. Utilization of deposit and suspended particulate matter by benthic “interface” feeders. Limnology and Oceanography 37(7): 1370–1391.

    Article  Google Scholar 

  • Taghon, G. L., A. R. M. Nowell & P. A. Jumars, 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210: 562–564.

    Article  CAS  PubMed  Google Scholar 

  • Underwood, A. J., 1997. Experiments in Ecology: Their Logical Design and Interpretation Using of Variance. Cambridge University Press, New York, NY.

    Google Scholar 

  • Vanagt, T., M. Vincx & S. Degraer, 2008. Is the burrowing performance of a sandy beach surfing gastropod limiting for its macroscale distribution? Marine Biology 155: 387–397.

    Article  Google Scholar 

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. Journal of Geology 30: 377–392.

    Article  Google Scholar 

  • Westheide, W., 2008. Polychaetes: Interstitial Families. The Linnean Society of London and the Estuarine and Coastal Science Association, London.

    Google Scholar 

  • Worsaae, K., A. Martínez & J. Núñez, 2009. Nerillidae (Annelida) from the Corona lava tube, Lanzarote, with description of Meganerilla cesari, n. sp.. Marine Biodiversity 39: 195–207.

    Google Scholar 

  • Wright, L. D. & A. D. Short, 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56: 93–118.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev & G. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, NY.

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Afranio G. Neto, Carla Ozório, Cinthya S. Santos, Fabiane Gallucci, Guilherme Corte, Gustavo Fonseca, and Paulo J.P. dos Santos for their suggestions on the first draft of the manuscript. Ana Luiza G. Martins, Alessandro L. Prantoni, André Pereira Cattani, Lucas Faria, Paulo Bernardes da Costa, Reginaldo Nunes, and Veronica Oliveira were most helpful providing logistic support during field sampling. This study was supported by the Brazilian National Council for Technological and Scientific Development (CNPq—Process 140611/2008-8), which provided the PhD fellowship of MDD, and São Paulo Research Foundation (FAPESP—Process 2012/08581-0; 2013/04358-7) which provided postdoctoral fellowships and grants for MDD. We are grateful to Fernando de Pol Mayer and Leonardo Sandrini Neto for the comments to the last version of the manuscript. Brett Gonzalez helped with the revision of the English text. We also thank two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Di Domenico.

Additional information

Handling editor: Diego Fontaneto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1130 kb)

Supplementary material 2 (MP4 1734 kb)

Supplementary material 3 (MP4 2294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Domenico, M., Martínez, A., Almeida, T.C.M. et al. Response of the meiofaunal annelid Saccocirrus pussicus (Saccocirridae) to sandy beach morphodynamics. Hydrobiologia 734, 1–16 (2014). https://doi.org/10.1007/s10750-014-1858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1858-9

Keywords

Navigation