Skip to main content
Log in

Are prokaryotic cell shape and size suitable to ecosystem characterization?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Estimation of microbial biomass depends on cell shape and size determinations, and thus, there is a wide biovolume variability among morphotypes. Nevertheless, data on morphology and morphometry of prokaryotic cells under different trophic status are seldom published, due to the methodological difficulties of cell measurements. The main question addressed in this paper concerns the suitability of prokaryotic size and shape for environmental characterization. Microbial biovolumes were compared among different ecosystems, located in temperate and tropical regions. Samples were taken from fresh, brackish, mixohaline, and estuarine waters that were classified as oligo-, meso-, eu-, and hypertrophic by comparing synoptically different trophic indices. Prokaryotic cell abundance and volume were quantified by Image Analysis, used to calculate biomass, and correlated to environmental variables. Some samples were analyzed by flow cytometry also, and data from sub-populations with a different apparent DNA content were available. Prokaryotic abundances generally increased from oligo- to hypertrophic waters while cell volumes increased from oligotrophic to eutrophic waters. Although significant correlations between cell volumes and environmental variables were detected (positive with salinity and negative with Chlorophyll-a), different morphotypes dominated each studied regions. Our results sustain the hypothesis that prokaryotic cell size and shape could be useful to ecosystem characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albright, L. J. & S. K. McCrae, 1987. Annual cycle of bacterial specific biovolumes in Howe Sound, a Canadian West Coast Fjord Sound. Applied and Environmental Microbiology 53: 2739–2744.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aminot, A. & M. Chaussepied, 1983. Manuel des analyses chimiques en milieu marin. CNEXO (Centre National pour l’Exploration des Océans), Brest: 395.

  • Andrade, L., A. M. Gonzalez, F. V. Araujo & R. Paranhos, 2003. Flow cytometry assessment of bacterioplankton in tropical marine environments. Journal of Microbiological Methods 19: 89–94.

    Google Scholar 

  • Araújo, M. F. F. & M. J. L. Godinho, 2008. Seasonal and spatial distribution of bacterioplankton in a fluvial–lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation. Brazilian Archives of Biology and Technology 51: 205–214.

    Article  Google Scholar 

  • Bloem, J., M. Veninga & J. Shepard, 1995. Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Applied Environmental Microbiology 61: 926–936.

    CAS  PubMed  Google Scholar 

  • Bölter, M., J. Bloem, K. Meiners & R. Möller, 2002. Enumeration and biovolume determination of microbial cells—a methodological review and recommendations for applications in ecological research. Biology and Fertility of Soils 36: 249–259.

    Article  Google Scholar 

  • Bölter, M., J. Bloem, K. Meiners & R. Möller, 2006. Enumeration and biovolume determination of microbial cells. In Bloem, J., D. W. Hopkins & M. Benedetti (eds), Microbiological Methods for Assessing Soil Quality. CABI Publishing, Wallingford, UK: 93–113.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  • Carlson, R. E., 1983. Discussion on “Using differences among Carlson’s trophic state index values in regional water quality assessment”, by Richard A. Osgood. Water Resources Bulletin 19: 307–309.

    Article  Google Scholar 

  • Carpenter, J. H., 1965. The accuracy of the Winkler method for the dissolved oxygen analysis. Limnology and Oceanography 10: 135–140.

    Article  CAS  Google Scholar 

  • Chrzanowski, T. H. & K. Šimek, 1990. Prey-size selection by freshwater flagellated protozoa. Limnology and Oceanography 35: 1429–1436.

    Article  Google Scholar 

  • Chrzanowski, T. H., R. D. Crotty & G. J. Hubbard, 1988. Seasonal variation in cell volume of epilimnetic bacteria. Microbial Ecology 16: 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Chuan, T., T. Jing, W. Xin, Y. Wenjin, L. Xianglong, L. Daotang & Y. Hong, 2009. Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis. Journal of Plankton Research 31: 885–897.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cochrane, S. K. J., D. W. Connor, P. Nilsson, I. Mitchell, J. Reker, J. Franco, V. Valavanis, S. Moncheva, J. Ekebom, K. Nygaard, R. Serrão Santos, I. Naberhaus, T. Packeiser, W. van de Bund & A. C. Cardoso, 2010. Marine Strategy Framework Directive. Guidance on the Interpretation and Application of Descriptor 1: Biological Diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research Centre, Ispra, Italy.

  • Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105–112.

    Article  CAS  Google Scholar 

  • Cottrel, M. T. & D. L. Kirchman, 2004. Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquatic Microbial Ecology 34: 139–149.

    Article  Google Scholar 

  • Ducklow, H. W. & F. Shiah, 1993. Bacterial production in estuaries. In Ford, T. (ed.), Aquatic Microbiology: An Ecological Approach. Blackwell, New York: 261–288.

    Google Scholar 

  • Ducklow, H. W., X. A. G. Moràn & A. E. Murray, 2012. Bacteria in the greenhouse: marine microbes and climate change. In Mitchell, R. & J. D. Gu (eds), Environmental Microbiology. John Wiley & Sons Inc., Hoboken: 1–31.

    Google Scholar 

  • Ellis, R. J., P. Morgan, A. J. Weightman & J. C. Fry, 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology 69: 3223–3230.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furtado, A. L. S., P. Casper & F. A. Esteves, 2001. Bacterioplankton abundance, biomass and production in a Brazilian coastal lagoon and in two German lakes. Anais da Academia Brasileira de Ciências 73: 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Gasol, J. M. & P. A. del Giorgio, 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina 64: 197–224.

    Article  Google Scholar 

  • Gasol, J. M. & C. M. Duarte, 2000. Comparative analyses in aquatic microbial ecology: how far do they go. FEMS Microbiology Ecology 31: 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Giovanardi, F. & E. Tromellini, 1992. Statistical assessment of trophic conditions: application of the OECD methodology to the marine environment. In Vollenweider, R. A., R. Marchetti & R. Viviani (eds), Marine Coastal Eutrophication. Elsevier, Amsterdam: 211–233.

    Chapter  Google Scholar 

  • Gocke, K., C. Hernández, H. Giesenhagen & H. G. Hoppe, 2004. Seasonal variations of bacterial abundance and biomass and their relation to phytoplankton in the hypertrophic tropical lagoon Ciénaga Grande de Santa Marta, Colombia. Journal of Plankton Research 26: 1429–1439.

    Article  Google Scholar 

  • Grasshoff, K., K. Kremling & M. Erhardt, 1999. Methods of Seawater Analysis, 3rd edn. Wiley-VCH Verlag, Germany: 600 pp.

  • Gurung, T. B., J. Urabe, K. Nozaki, C. Yoshimizu & M. Nakanishi, 2002. Bacterioplankton production in a water column of Lake Biwa. Lakes Reservoirs 7: 317–323.

    Article  Google Scholar 

  • Hernández-Avilés, J. S., R. Bertoni, M. Macek & C. Callieri, 2012. Why bacteria are smaller in the epilimnion than in the hypolimnion? A hypothesis comparing temperate and tropical lakes. Journal of Limnology 71: 104–111.

    Article  Google Scholar 

  • Hoppe, H. G., H. C. Giesenhagen & K. Gocke, 1998. Changing patterns of bacterial substrate decomposition in a eutrophical gradient. Aquatic Microbial Ecology 15: 1–13.

    Article  Google Scholar 

  • Jochem, F. J., 2001. Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry. Aquatic Microbial Ecology 25: 179–194.

    Article  Google Scholar 

  • Jolliffe, I., 2005. Principal component analysis. In Everitt, B. S. & D. C. Howell (eds), Encyclopedia of Statistics in Behavioral Science. Wiley, New York.

    Google Scholar 

  • Jugnia, L. B., R. D. Tadonléké, T. Sime-Ngando, S. M. Foto & N. Kemka, 1998. Short-term variations in the abundance and cell volume of bacterioplankton in an artificial tropical lake. Hydrobiologia 385: 113–119.

    Article  CAS  Google Scholar 

  • Kalcheva, H., D. Terziyski, R. Kalchev, K. Dochin & A. Ivanova, 2010. Control of zoo plankton and nutrients on bacterioplankton in fish ponds with carp larvae. Bulgarian Journal of Agricultural Science 16: 284–297.

    Google Scholar 

  • Kampstra, P., 2008. A boxplot alternative for visual comparison of distributions. Journal of Statistical Software, Code Snippets 28: 1–9. http://www.jstatsoft.org/v28/c01/.

  • Krambeck, C., H. J. Krambeck & J. Overbeck, 1981. Microcomputer assisted biomass determination of plankton bacteria on scanning electron micrographs. Applied Environmental Microbiology 42: 142–149.

    CAS  PubMed  Google Scholar 

  • Kroer, N., 1994. Relationships between biovolume and carbon and nitrogen content of bacterioplankton. FEMS Microbial Ecology 13: 217–223.

    Article  Google Scholar 

  • La Ferla, R. & M. Leonardi, 2005. Ecological implications of biomass and morphotype variations of bacterioplankton: an example in a coastal zone of the Northern Adriatic Sea (Mediterranean). Marine Ecology 26: 82–88.

    Article  Google Scholar 

  • La Ferla, R., A. Lo Giudice & G. Maimone, 2004. Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea. Scientia Marina 68: 23–31.

    Google Scholar 

  • La Ferla, R., M. Azzaro, G. Budillon, C. Caroppo, F. Decembrini & G. Maimone, 2010. Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005). Advances in Oceanography and Limnology 2: 235–257.

    Article  Google Scholar 

  • La Ferla, R., G. Maimone, M. Azzaro, F. Conversano, C. Brunet, A. S. Cabral & R. Paranhos, 2012. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research 66: 635–650.

    Article  Google Scholar 

  • Lazzara, L., F. Bianchi, M. Falcucci, V. Hull, M. Modigh & M. Ribera D’Alcalà, 1990. Pigmenti clorofilliani. Nova Thalassia 11: 207–223.

    Google Scholar 

  • Lee, S. & A. Fuhrman, 1987. Relationship between biovolume and biomass of naturally derived bacterioplankton. Applied and Environmental Microbiology 53: 1298–1303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lind, O. T. & E. Barcena, 2003. Response of riverine and transition zone bacterioplankton communities to a pulsed river inflow. Hydrobiologia 504: 79–85.

    Article  Google Scholar 

  • Loferer-Krößbacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied and Environmental Microbiology 64: 688–694.

    PubMed Central  PubMed  Google Scholar 

  • Mahadevaswamy, M., S. M. Yamakanamardi & T. S. Harsha, 2008. Bacterial (free-living and particle bound) cell-size in the surface waters of River Cauvery and its upstream tributaries in Karnataka State, India. Applied Ecology and Environmental Research 6: 29–47.

    Google Scholar 

  • Massana, R., J. P. Gasol, P. K. Bjørnsen, N. Blackburn, A. Hanström, S. Hietanen, B. H. Hygum, J. Kuparinen & C. Pedrós-Alió, 1997. Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Science Marine 61: 397–407.

    Google Scholar 

  • Mayr, L. M., D. R. Tenenbaum, M. C. Villac, R. Paranhos, C. R. Nogueira, S. L. C. Bonecker & A. C. Bonecker, 1989. Hydrobiological characterization of Guanabara Bay. In Maggon, O. T. & C. Neves (eds), Coastlines of Brazil. American Society of Civil Engineering, New York: 124–139.

    Google Scholar 

  • Nakano, S. & Z. Kawabata, 2000. Changes in cell volume of bacteria and heterotrophic nanoflagellates in a hypereutrophic pond. Hydrobiologia 428: 197–203.

    Article  Google Scholar 

  • Norland, S., 1993. The relationship between biomass and volume of bacteria. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 303–307.

    Google Scholar 

  • Øvreås, L., D. Bourne, R. A. Sandaa, E. O. Casamayor, S. Benlloch, V. Goddard, G. Smerdon, M. Heldal & T. F. Thingstad, 2003. Response of bacterial and viral communities to nutrient manipulations in seawater mesocosms. Aquatic Microbial Ecology 31: 109–121.

    Article  Google Scholar 

  • Pernthaler, J. & R. Amann, 2005. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiology and Molecular Biology Reviews 6: 440–461.

    Article  Google Scholar 

  • Piccini, C., D. Conde, C. Alonso, R. Sommaruga & J. Pernthaler, 2006. Blooms of single bacterial species in a coastal lagoon of the Southwestern Atlantic Ocean. Applied and Environmental Microbiology 72: 6560–6568.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Posch, T., J. Franzoi, M. Prader & M. M. Salcher, 2009. New image analysis tool to study biomass and morphotypes of three major bacterioplankton groups in an alpine lake. Aquatic Microbial Ecology 54: 113–126.

    Article  Google Scholar 

  • Quinones, R. A., T. Platt & J. Rodríguez, 2003. Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic. Progress in Oceanography 57: 405–427.

    Article  Google Scholar 

  • Racy, F., M. J. L. Godinho, M. H. Regali-Seleghim, N. R. S. Bossolan, A. C. Ferrari & J. V. Lucca, 2005. Assessment of the applicability of morphological and size diversity indices to bacterial populations of reservoir in different trophic states. Acta Limnologica Brasiliensia 17: 395–408.

    Google Scholar 

  • Šestanović, S., M. Šolić, N. Krstulović & D. Bogner, 2005. Volume, abundance and biomass of sediment bacteria in the eastern mid Adriatic Sea. Acta Adriatica 46: 177–191.

    Google Scholar 

  • Šimek, K., J. Penrhtaler, M. G. Weinbauer, K. Hornák, J. R. Dolan, J. Nedoma, M. Mašin & R. Amann, 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Applied and Environmental Microbiology 67: 2723–2733.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sjöstedt, J., A. Hagström & U. L. Zweifel, 2012. Variation in cell volume and community composition of bacteria in response to temperature. Aquatic Microbial Ecology 66: 237–246.

    Article  Google Scholar 

  • Sommaruga, R. & R. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic lakes. FEMS Microbiology Ecology 24: 187–200.

    Article  CAS  Google Scholar 

  • Straza, T. R. A., M. T. Cottrell, H. W. Ducklow & D. L. Kirchman, 2009. Geographic and phylogenetic variation in bacterial biovolume as revealed by protein and nucleic acid staining. Applied and Environmental Microbiology 75: 4028–4034.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin Fisheries Research Board of Canada 167: 1–310.

    Google Scholar 

  • Teixeira, M. C., N. F. Santana, J. C. Rodriguez de Azevedo & T. A. Pagioro, 2011. Bacterioplankton features and its relations with DOC characteristics and other limnological variables in Paraná river floodplain environments (PR/MS – Brazil). Brazilian Journal of Microbiology 42: 897–908.

    Article  CAS  PubMed  Google Scholar 

  • Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.

    Article  CAS  Google Scholar 

  • van Wambeke, F., S. Heussner, F. Diaz, P. Raimbault & P. Conan, 2002. Small-scale variability in the coupling/uncoupling of bacteria, phytoplankton and organic carbon fluxes along the continental margin of the Gulf of Lions, Northwestern Mediterranean Sea. Journal of Marine Systems 33–34: 411–429.

    Article  Google Scholar 

  • van Wambeke, F., P. Catala, M. Pujo-Pay & P. Lebaron, 2011. Vertical and longitudinal gradients in HNA–LNA cell abundances and cytometric characteristics in the Mediterranean Sea. Biogeosciences 8: 1853–1863.

    Article  Google Scholar 

  • Vrede, K., M. Heldal, S. Norland & G. Bratbak, 2002. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Applied and Environmental Microbiology 68: 2965–2971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winter, C., A. Smit, G. J. Herndl & M. G. Weinbauer, 2005. Linking bacterial richness with viral abundance and prokaryotic activity. Limnology and Oceanography 50: 968–977.

    Article  Google Scholar 

  • Wu, Y., T. Platt, C. C. L. Tang & S. Sathyendranath, 2007. Short-term changes in chlorophyll distribution in response to a moving storm: a modelling study. Marine Ecology Progress Series 335: 57–68.

    Article  CAS  Google Scholar 

  • Young, K. D., 2006. The selective value of bacterial shape. Microbiology and Molecular Biology Reviews 70: 660–703.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeder, M., E. Kohler, L. Zeder & J. Pernthaler, 2011. A novel algorithm for the determination of bacterial cell volumes that is unbiased by cell morphology. Microscopy and Microanalysis 17: 799–809.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editor and two anonymous reviewers for their useful comments. They also thank two colleagues of IAMC—Mr. Francesco Soraci, for his help in the laboratory, and Mr. Enrico Minicante Armeli, for data processing—as well as the Municipality of Regalbuto (Enna, Italy) for its endorsement. This study was supported by funds by: CNPq and FAPERJ in the frame of project “Microbial Observatory of Rio de Janeiro”; CNR in the frame of the program of Short Term Mobility 2009 (AMMCNT—CNR n. 0051228) “Confronto tra popolamenti procariotici dell’Oceano Atlantico e del Mediterraneo attraverso l’uso congiunto di tecniche citofluorimetriche e di analisi d’immagine. Analisi di campioni epi-, meso- e bati-pelagici ed interpretazione di dati pregressi per la progettazione di studi futuri sui cambiamenti globali”; Joint project CNR-CAS (AMMCNT—CNR n. 0038575) “Understanding expression and regulation of microbial enzymes involved in organic matter decomposition at different trophic levels and the interrelationship between alkaline phosphatase and eutrophication in Italian and Chinese water bodies.”; Marine Strategy Framework Directive (MFSD) of European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. La Ferla.

Additional information

Handling editor: Stefano Amalfitano

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 31 kb)

Supplementary material 2 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Ferla, R., Maimone, G., Caruso, G. et al. Are prokaryotic cell shape and size suitable to ecosystem characterization?. Hydrobiologia 726, 65–80 (2014). https://doi.org/10.1007/s10750-013-1752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1752-x

Keywords

Navigation