Skip to main content
Log in

Molecular and morphological evidence for conspecificity of two common Indo-Pacific species of Palythoa (Cnidaria: Anthozoa)

  • BIODIVERSITY IN ASIAN COASTAL WATERS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Zoanthids of the genus Palythoa are common in coral reef environments worldwide, particularly in the intertidal zone. However, their taxonomy remains problematic, resulting in an incomplete understanding of their diversity. Palythoa caesia Dana, 1846 is found in Fiji, Australia, and the Indian Ocean, while P. tuberculosa (Esper, 1805) has been reported from India, the Red Sea, Singapore, Madagascar, and Japan. The lack of obvious characters differentiating the two species, their wide distributions and high levels of intraspecific variation raise the possibility that these species are in fact one. Based on specimens from Australia, the Red Sea, and Japan, we used three DNA markers (mitochondrial cytochrome oxidase I, 16S ribosomal DNA, and the nuclear internal transcribed spacer region of ribosomal DNA) combined with morphological analyses of tentacle numbers, and cnidae to re-examine the identity of these two taxa. Phylogenetic results showed sequences from all specimens for all markers formed one monophyly, and morphological results showed little differentiation between the two putative taxa. Overall, it is apparent these two taxa are the same species, and the senior synonym P. tuberculosa should be used for specimens for the entire Indo-Pacific region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuña, F. H., A. C. Excoffon, M. O. Zamponi & L. Ricci, 2003. Importance of nematocysts in taxonomy of acontiarian sea anemones (Cnidaria, Actiniaria): a statistical comparative study. Zoologischer Anzeiger 242: 75–81.

    Article  Google Scholar 

  • Acuña, F. H., A. C. Excoffon & L. Ricci, 2007. Composition, biometry and statistical relationships between the cnidom and body size in the sea anemone Oulactis muscosa (Cnidaria: Actiniaria). Marine Biological Association of the United Kingdom 87: 415–419.

    Article  Google Scholar 

  • Burnett, W. J., 2002. Longitudinal variation in algal symbionts (zooxanthellae) from the Indian Ocean zoanthid Palythoa caesia. Marine Ecology Progress Series 234: 105–109.

    Article  Google Scholar 

  • Burnett, W. J., J. A. H. Benzie, J. A. Beardmore & J. S. Ryland, 1994. High genetic variability and patchiness in a common Great Barrier Reef zoanthid (Palythoa caesia). Marine Biology 121: 153–160.

    Article  Google Scholar 

  • Burnett, W. J., J. A. H. Benzie, J. A. Beardmore & J. S. Ryland, 1997. Zoanthids (Anthozoa, Hexacorallia) from the Great Barrier Reef and Torres Strait, Australia: systematics, evolution and a key to species. Coral Reefs 16: 55–68.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Costa, D. L., P. B. Gomes, A. M. Santos, N. S. Valenca, N. A. Vieira & C. D. Perez, 2011. Morphological plasticity in the reef zoanthid Palythoa caribaeorum as an adaptive strategy. Annales Zoologici Fennici 48: 349–358.

    Article  Google Scholar 

  • Dana, J. D., 1846. Zoophytes. Volume 7 of the United States Exploring Expedition during the years 1838, 1939, 1840, 1841, 1842 under the command of Charles Wilkes. U.S.N. Lea and Blanchard, Philadelphia.

    Google Scholar 

  • Ehrenberg, C. G., 1834. Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin 1: 225–380 (in German).

    Google Scholar 

  • England, K. W., 1991. Nematocysts of sea anemones (Actiniaria, Ceriantharia and Corallimorpharia: Cnidaria): nomenclature. Hydrobiologia 216(217): 691–697.

    Article  Google Scholar 

  • Erhardt, H. & D. Knop, 2005. Corals: Indo-Pacific Field Guide. IKAN Unterwasserarchiv, Frankfurt.

    Google Scholar 

  • Esper, E. J. C., 1805. Die Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet nebst Beschreibungen. Raspe, Nürnberg. Theilen 1–3, Lieferungen 13 (in German and Latin).

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Article  Google Scholar 

  • Fossa, S. A. & A. J. Nilsen, 1998. The Modern Coral Reef Aquarium, Vol. 2. Birgit Schmettkamp Verlag, Bornheim.

    Google Scholar 

  • Freudenthal, H. D., 1962. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. Journal of Eukaryotic Microbiology 9: 45–52.

    Google Scholar 

  • Fujii, T. & J. D. Reimer, 2011. Phylogeny of the highly divergent family Microzoanthidae (Anthozoa, Hexacorallia) from the Pacific. Zoologica Scripta 40: 418–431.

    Article  Google Scholar 

  • Guindon, S. & O. Gascuel, 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.

    Article  PubMed  Google Scholar 

  • Haywick, D. W. & E. M. Mueller, 1997. Sediment retention in encrusting Palythoa spp.—a biological twist to a geological process. Coral Reefs 16: 39–46.

    Article  Google Scholar 

  • Hidaka, M., I. Miyazaki & K. Yamamoto, 1987. Nematocysts characteristic of the sweeper tentacles of the coral Galaxea fascicularis (Linnaeus). Galaxea 6: 195–207.

    Google Scholar 

  • Hirose, M., M. Obuchi, E. Hirose & J. D. Reimer, 2011. Timing of spawning and early development of Palythoa tuberculosa (Anthozoa, Zoantharia, Sphenopidae) in Okinawa, Japan. Biological Bulletin 220: 23–31.

    Google Scholar 

  • Hoover, J. P., 1999. Hawai’i’s Sea Creatures. Mutual Publishing LLC, Honolulu.

    Google Scholar 

  • Huang, D., R. Meier, P. A. Todd & L. M. Chou, 2008. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. Journal of Molecular Evolution 66: 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Kamezaki, M., M. Higa, M. Hirose, S. Suda & J. D. Reimer, 2012. Different zooxanthellae types in populations of the zoanthid Zoanthus sansibaricus along depth gradients in Okinawa, Japan. Marine Biodiversity. doi:10.1007/s12526-012-0119-2.

    Google Scholar 

  • Karlson, R. H., 1988. Size-dependent growth in two zoanthid species: a contrast in clonal strategies. Ecology 69: 1219–1232.

    Article  Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Klunzinger, K. B., 1877. Die Korallthiere des Rothen Meeres. 1: Die Alcyonarien und Malacodermen. Verlag der Gutmann’schen Buchhandlung (Otto Enslin), Berlin (in German and Latin).

  • Lamouroux, J. V. F., 1816. Histoire des Polypiers Coralligènes Flexibles, Vulgairement Nommés Zoophytes. F. Poisson, Caen.

    Google Scholar 

  • Lanave, C., G. Preparata, C. Saccone & G. Serio, 1984. A new method for calculating evolutionary substitution rates. Journal of Molecular Evolution 20: 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Low, M. E. Y. & J. D. Reimer, 2011. Parazoanthus Haddon & Shackleton, 1891, and Parazoanthidae Delage & Hérouard, 1901: conservation of usage by Reversal of Precedence with Bergia Duchassing & Michelotti, 1860, and Bergiidae Verrill, 1869 (Cnidaria: Anthozoa: Hexacorallia). Zootaxa 2995: 64–68.

    Google Scholar 

  • Ong, C. W., J. D. Reimer & P. A. Todd, 2013. Morphologically plastic responses to shading in the zoanthids Zoanthus sansibaricus and Palythoa tuberculosa. Marine Biology 160: 1053–1064.

    Article  Google Scholar 

  • Paulay, G., M. P. Puglisi & J. A. Starmer, 2003. The non-scleractinian Anthozoa (Cnidaria) of the Mariana Islands. Micronesica 35–36: 138–155.

    Google Scholar 

  • Pax, F., 1910. Studien an westindischen Actinien. In Spengel, J. W. (ed.), Ergebnisse einer Zoologischen Forschungreise nach westindien von Prof. W. Kukenthal and Dr. R. Hartmeyer im Jahre, 1907. G. Fischer, Jena, Zoologische Jahrbucher Supplement 11: 157–330.

  • Polak, O., Y. Loya, I. Brickner, E. Kramarski-Winter & Y. Benayahu, 2011. The widely-distributed Indo-Pacific zoanthid Palythoa tuberculosa: a sexually conservative strategist. Bulletin of Marine Science 87: 605–621.

    Google Scholar 

  • Reimer, J., 2012. Palythoa Lamouroux, 1816. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=205785 on 2013-02-01.

  • Reimer, J. D. & C. Hickman, 2009. Preliminary survey of zooxanthellate zoanthids (Cnidaria: Hexacorallia) of the Galápagos and associated symbiotic dinoflagellates (Symbiodinium spp.). Galápagos Research 66: 14–19.

    Google Scholar 

  • Reimer, J. D. & P. A. Todd, 2009. Preliminary molecular examination of zooxanthellate zoanthid (Hexacorallia, Zoantharia) and associated zooxanthellae (Symbiodinium spp.) diversity in Singapore. Raffles Bulletin of Zoology 22: 103–120.

    Google Scholar 

  • Reimer, J. D., S. Ono, Y. Fujiwara, K. Takishita & J. Tsukahara, 2004. Reconsidering Zoanthus spp. diversity: molecular evidence of conspecificity within four previously presumed species. Zoological Science 21: 517–525.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, J. D., S. Ono, A. Iwama, K. Takishita, J. Tsukahara & T. Maruyama, 2006a. Morphological and molecular revision of Zoanthus (Anthozoa: Hexacorallia) from Southwestern Japan, with descriptions of two new species. Zoological Science 23: 261–275.

    Article  PubMed  Google Scholar 

  • Reimer, J. D., S. Ono, K. Takishita, J. Tsukahara & T. Maruyama, 2006b. Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zoological Science 23: 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, J. D., K. Takishita & T. Maruyama, 2006c. Molecular identification of symbiotic dinoflagellates (Symbiodinium spp.) from Palythoa spp. (Anthozoa: Hexacorrallia) in Japan. Coral Reefs 25: 521–527.

    Article  Google Scholar 

  • Reimer, J. D., S. Hirano, Y. Fujiwara, F. Sinniger & T. Maruyama, 2007a. Morphological and molecular characterization of Abyssoanthus nankaiensis, a new family, new genus and new species of deep-sea zoanthid (Anthozoa: Hexacorallia: Zoantharia) from a northwest Pacific methane cold seep. Invertebrate Systematics 21: 255–262.

    Article  CAS  Google Scholar 

  • Reimer, J. D., S. Ono, J. Tsukahara, K. Takishita & T. Maruyama, 2007b. Non-seasonal clade-specificity and subclade microvariation in symbiotic dinoflagellates (Symbiodinium spp.) in Zoanthus sansibaricus (Anthozoa: Hexacorallia) at Kagoshima Bay, Japan. Phycological Research 55: 58–65.

    Article  CAS  Google Scholar 

  • Reimer, J. D., M. Obuchi, Y. Irei, T. Fujii & Y. Nozawa, 2011. Shallow water brachycnemic zoanthids (Cnidaria: Hexacorallia) from Taiwan: a preliminary survey. Zoological Studies 50: 363–371.

    Google Scholar 

  • Reimer, J. D., Y. Irei & T. Fujii, 2012b. Two new species of Neozoanthus (Cnidaria, Hexacorallia, Zoantharia) from the Pacific. ZooKeys 246: 69–87.

    Article  PubMed  Google Scholar 

  • Reimer, J. D., C. Foord & Y. Irei, 2012a. Species diversity of shallow water zoanthids (Cnidaria: Anthozoa: Hexacorallia) in Florida. Journal of Marine Biology 2012: Article ID 856079. doi:10.1155/2012/856079

  • Ryland, J. S. & J. E. Lancaster, 2003. Revision for methods separating species of Protopalythoa (Hexacorallia: Zoanthidea) in the tropical west Pacific. Invertebrate Systematics 17: 407–428.

    Article  Google Scholar 

  • Ryland, J. S. & J. E. Lancaster, 2004. A review of zoanthid nematocyst types and their population structure. Hydrobiologia 530(531): 179–187.

    Google Scholar 

  • Schmidt, H., 1974. On evolution in the Anthozoa. Proceedings of the Second International Symposium on Coral Reefs 1: 533–560.

    Google Scholar 

  • Shearer, T. L., M. J. H. van Oppen, S. L. Romano & G. Wörheide, 2002. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Molecular Ecology 11: 2475–2487.

    Article  CAS  PubMed  Google Scholar 

  • Shiroma, E. & J. D. Reimer, 2010. Investigations into the reproductive patterns, ecology, and morphology in the zoanthid genus Palythoa (Cnidaria: Anthozoa: Hexacorallia) in Okinawa, Japan. Zoological Studies 49(2): 189–194.

    Google Scholar 

  • Sinniger, F., 2006. Zoanthids of New Caledonia. In Payri, C. & B. Richier de Forges (eds), Compendium of Marine Species from New Caledonia. IRD Editions, Noumea: 127–128.

  • Sinniger, F., J. D. Reimer & J. Pawlowski, 2010. The Parazoanthidae DNA taxonomy: description of two new genera. Marine Biodiversity 40: 57–70.

    Article  Google Scholar 

  • Swain, T. D., 2010. Evolutionary transitions in symbioses: dramatic reductions in bathymetric and geographic ranges of Zoanthidea coincide with loss of symbioses with invertebrates. Molecular Ecology 19: 2587–2598.

    CAS  PubMed  Google Scholar 

  • Williams, R. B., 2000. A redescription of the zoanthid Isozoanthus sulcatus (Gosse, 1859), with notes on its nomenclature, systematics, behavior, habitat and geographical distribution. Ophelia 52: 193–206.

    Article  Google Scholar 

  • Yamazato, K., F. Yoshimoto & N. Yoshihara, 1973. Reproductive cycle in a zoanthid Palythoa tuberculosa Esper. Publications of the Seto Marine Biology Laboratory 20: 275–283.

  • Yarincik, K. & R. O’Dor, 2005. The census of marine life: goals, scope and strategy. Scientia Marina 69(Supplement 1): 201–208.

    Google Scholar 

Download references

Acknowledgments

The corresponding author was supported by the Rising Star Program, and the International Research Hub Project for Climate Change and Coral Reef/Island Dynamics at the University of the Ryukyus. In Australia, the Census of Coral Reef Ecosystems (CReefs) Australia Project, and in particular Dr. Julian Caley and Shawn Smith (both AIMS) are thanked for logistical support. Specimens from Australia were collected under Great Barrier Reef Marine Park Authority permit #G32313.1 and Queensland Fisheries permit #9512, and from Ningaloo Reef under Western Australia’s Department of Environment and Conservation Permit #SF007428. Field work at Eilat (Red Sea) was supported by the Israel Cohen Chair in Environmental Zoology to YB and collection there complied with a permit issued by the Israel Nature and National Parks Protection Authority. YB would like to thank the staff of the Interuniversity Institute for Marine Science in Eilat (IUI) for their kind hospitality and facilities. Profs. Shoichiro Suda and Euichi Hirose reviewed an earlier version of this manuscript. Two anonymous reviewers’ comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Davis Reimer.

Additional information

Guest editors: M. Tokeshi & H. T. Yap / Biodiversity in Changing Coastal Waters of Tropical and Subtropical Asia

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hibino, Y., Todd, P.A., Yang, Sy. et al. Molecular and morphological evidence for conspecificity of two common Indo-Pacific species of Palythoa (Cnidaria: Anthozoa). Hydrobiologia 733, 31–43 (2014). https://doi.org/10.1007/s10750-013-1587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1587-5

Keywords

Navigation