Skip to main content
Log in

Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany)

  • PHYTOPLANKTON
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In winter of 2009/2010, Aphanizomenon flos-aquae bloomed in the ice and snow covered oligo-mesotrophic Lake Stechlin, Germany. The photosynthesis of the natural population was measured at eight temperatures in the range of 2–35°C, at nine different irradiance levels in the range of 0–1,320 μmol m−2 s−1 PAR at each applied temperature. The photoadaptation parameter (I k) and the maximum photosynthetic rate (P max) correlated positively with the temperature between 2 and 30°C, and there was a remarkable drop in both parameters at 35°C. The low I k at low temperatures enabled the active photosynthesis of overwintering populations at low irradiance levels under ice and snow cover. The optimum of the photosynthesis was above 20°C at irradiances above 150 μmol m−2 s−1. At lower irradiance levels (7.5–30 μmol m−2 s−1), the photosynthesis was the most intensive in the temperature range of 2–5°C. The interaction between light and temperature allowed the proliferation of A. flos-aquae in Lake Stechlin resulting in winter water bloom in this oligo-mesotrophic lake. The applied 2°C is the lowest experimental temperature ever in the photosynthesis/growth studies of A. flos-aquae, and the results of the P–I and P–T measurements provide novel information about the tolerance and physiological plasticity of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren, G., 1987. Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190.

    Article  Google Scholar 

  • APHA – American Public Health Association, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. United Book Press, Inc., Baltimore, MD.

    Google Scholar 

  • Bissinger, J. E., D. J. S. Montagnes, J. Sharples & D. Atkinson, 2008. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnology and Oceanography 53: 487–493.

    Article  Google Scholar 

  • Butterwick, C., S. I. Heaney & J. F. Talling, 2005. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50: 291–300.

    Article  Google Scholar 

  • De Nobel, W. T., C. P. H. Matthijs, E. von Elert & L. R. Mur, 1998. Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytologist 138: 579–587.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Gervais, F., J. Padisák & R. Koschel, 1997. Do light quality and low nutrient concentration favour picocyanobacteria below the thermocline of the oligotrophic Lake Stechlin? Journal of Plankton Research 19: 771–781.

    Article  Google Scholar 

  • Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Jones, R. I., 1979. Notes on the growth and sporulation of a natural population of Aphanizomenon flos-aquae. Hydrobiologia 62: 55–58.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Konopka, A. & T. D. Brock, 1978. Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. Applied and Environmental Microbiology 36: 572–576.

    PubMed  CAS  Google Scholar 

  • Krause, G. H., 1994. Photoinhibition induced by low temperatures. In Baker, N. R. & J. R. Bower (eds), Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Bios Scientific Publishers, Oxford: 331–348.

    Google Scholar 

  • Lazarova, D., A. Popova, D. Stanoeva & M. Velitchkova, 2009. Involvement of reactive oxygen radicals in photoinhibition of primary photosynthetic reactions—effect of temperature and oxygen radical scavengers. Biotechnology & Biotechnological Equipment 23: 511–515.

    Google Scholar 

  • Lei, R., M. Leppäranta, A. Erm, E. Jaatinen & O. Pärn, 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Estonian Journal of Earth Sciences 60: 50–64.

    Article  Google Scholar 

  • Mehnert, G., F. Leunert, S. Cirés, K. D. Jöhnk, J. Rücker, B. Nixdorf & C. Wiedner, 2010. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions. Journal of Plankton Research 32: 1009–1021.

    Article  CAS  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding highly adaptive bluegreen algal species: worldwide distribution and review of its ecology. Archiv für Hydrobiologie Supplement 107: 563–593.

    Google Scholar 

  • Padisák, J., É. Hajnal, L. Krienitz, J. Lakner & V. Üveges, 2010. Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653: 45–64.

    Article  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Platt, T., C. L. Gallegos & W. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research 38: 687–701.

    Google Scholar 

  • Preußel, K., G. Wessel, J. Fastner & I. Chorus, 2009. Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae 8: 645–650.

    Article  Google Scholar 

  • Price, G. D., D. Sültemeyer, B. Klughammer, M. Ludwig & M. R. Badger, 1998. The functioning of the CO2 concentrating mechanism in several cyanobacterial strains: a review of general physiological characteristics, genes, proteins, and recent advances. Canadian Journal of Botany 76: 973–1002.

    CAS  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Scherer, S., E. Stürlz & P. Boger, 1981. Arrhenius plots indicate localization of photosynthetic and respiratory electron transport in different membrane regions of Anabaena. Zeitschrift für Naturforschung Teil C 36: 1036–1040.

    Google Scholar 

  • Seaburg, K. G., B. C. Parker, R. A. Wharton & G. M. Simmons, 1981. Temperature growth responses of algal isolates from Antarctic oases. Journal of Phycology 17: 353–360.

    Article  Google Scholar 

  • Simona, M., 2003. Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano. Journal of Limnology 62: 190–206.

    Article  Google Scholar 

  • Steemann-Nielsen, E. J., 1952. The use of radioactive carbon (14C) for measuring organic production in the sea. Journal du Conseil Permanent International pour l’Exploration de la Mer 18: 117–140.

    Google Scholar 

  • Tsujimura, S., K. Ishikawa & H. Tsukada, 2001. Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake Yogo. Phycological Research 49: 275–280.

    Article  Google Scholar 

  • Uehlinger, U., 1981. Experimental studies on the autecology of Aphanizomenon flos-aquae (Experimentelle Untersuchungen zur Autökologie von Aphanizomenon flos-aquae). Archiv für Hydrobiologie Supplement 60: 260–288.

    CAS  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Üveges, V., L. Vörös, J. Padisák & A. W. Kovács, 2011. Primary production of epipsammic algal communities in Lake Balaton (Hungary). Hydrobiologia 660: 17–27.

    Article  Google Scholar 

  • Vincent, W. F., 2000. Cyanobacterial dominance on Polar regions. In Whitton, B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer, Netherlands: 321–340.

    Google Scholar 

  • Vincent, W. F., 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environments. Springer, UK: 287–301.

    Chapter  Google Scholar 

  • Vincent, W. F., L. G. Whyte, C. Lovejoy, C. W. Greer, I. Laurion, C. A. Suttle, J. Corbeil & D. R. Mueller, 2009. Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Science 3: 171–180.

    Article  Google Scholar 

  • Vincent, W. F., T. V. Callaghan, D. Dahl-Jensen, M. Johansson, K. M. Kovacs, C. Michel, T. Prowse, J. D. Reist & M. Sharp, 2011. Ecological implications of changes in the arctic cryosphere. AMBIO 40: 87–99.

    Article  Google Scholar 

  • Vyverman, W., E. Verleyen, A. Wilmotte, D. A. Hodgson, A. Willems, K. Peeters, B. Van de Vijver, A. De Wever, F. Leliaert & K. Sabbe, 2010. Evidence for widespread endemism among Antarctic micro-organisms. Polar Science 4: 103–113.

    Article  Google Scholar 

  • Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: quantifying the effects of climate change. Limnology and Oceanography 54: 2460–2468.

    Article  Google Scholar 

  • Walsby, A. E., 1994. Gas vesicles. Microbiological Reviews 58: 94–144.

    PubMed  CAS  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.

    Google Scholar 

  • Wildman, R., J. H. Loescher & C. L. Winger, 1975. Development and germination of akinetes of Aphanizomenon flos-aquae. Journal of Phycology 11: 96–104.

    Google Scholar 

  • Wilhelm, S. & R. Adrian, 2008. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshwater Biology 53: 226–237.

    Article  CAS  Google Scholar 

  • Yamamoto, Y., 2009. Environmental factors that determine the occurrence and seasonal dynamics of Aphanizomenon flos-aquae. Journal of Limnology 68: 122–132.

    Article  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2005. The formation and degradation of cyanobacterium Aphanizomenon flos-aquae blooms: the importance of pH, water temperature, and day length. Limnology 6: 1–6.

    Article  CAS  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2006. Importance of interspecific competition in the abundance of Aphanizomenon flos-aquae (Cyanophyceae). Limnology 7: 163–170.

    Article  CAS  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2007. Factors affecting the fluctuation of akinete and heterocyst numbers of Aphanizomenon flos-aquae (Cyanobacteria) population. Algological Studies 125: 79–96.

    Article  CAS  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2009a. Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond. Limnology 10: 185–193.

    Article  Google Scholar 

  • Yamamoto, Y. & H. Nakahara, 2009b. Life cycle of cyanobacterium Aphanizomenon flos-aquae. Taiwania 54: 113–117.

    Google Scholar 

Download references

Acknowledgments

This research was implemented through the CENTRAL EUROPE Programme (European Lakes Under Environmental Stressors, 2CE243P3) and was supported by the Leibniz Gemeinschaft (Klimabetriebene Veränderung der Biodiversität von Mikrobiota—TemBi), and by the Hungarian National Science Foundation (OTKA Nr. 105827). We thank Dr. Lajos Vörös, Dr. Attila W. Kovács (Balaton Limnological Research Institute of the Hungarian Academy of Science), Dr. János Somlai and Borbála Máté (University of Pannonia, Institute of Radiochemistry and Radioecology) for their help in the radiocarbon measurements and the technical assistance by the staff of the Leibniz-Institute of Freshwater Ecology and Inland Fisheries for their contributions to the samplings and field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktória Üveges.

Additional information

Guest editors: N. Salmaso, L. Naselli-Flores, L. Cerasino, G. Flaim, M. Tolotti & J. Padisák / Phytoplankton responses to human impacts at different scales: 16th workshop of the International Association of Phytoplankton Taxonomy and Ecology (IAP)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Üveges, V., Tapolczai, K., Krienitz, L. et al. Photosynthetic characteristics and physiological plasticity of an Aphanizomenon flos-aquae (Cyanobacteria, Nostocaceae) winter bloom in a deep oligo-mesotrophic lake (Lake Stechlin, Germany). Hydrobiologia 698, 263–272 (2012). https://doi.org/10.1007/s10750-012-1103-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1103-3

Keywords

Navigation