Skip to main content

Advertisement

Log in

How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although habitat size is known to influence both structural and functional properties of ecosystems, there have been few attempts to assess the influence of habitat size on ecosystem processes. Here we investigated the relationships between leaf litter decomposition and ecosystem surface area, macroinvertebrates and physico-chemical factors in five freshwater springs located in Huntingdon County (Pennsylvania, U.S.A.). Leaves of Ulmus americana L. were used to study leaf litter breakdown with the litter-bag technique. Field work was carried out at one sampling station per spring, each with eight replicates per sampling time (3, 20, 40 days), from April to May 2004. American elm leaves decomposed at different rates in the different springs, varying inversely with the spring area. The leaf bags were colonized by 16 taxa of benthic macrofauna, amongst which scrapers and shredders were the most common guild. Macroinvertebrate species richness co-varied with spring area, but not with other physico-chemical variables. Moreover, a significant inverse relationship was observed between American elm leaf decay rate and taxonomic richness. In the studied springs, habitat area was an ecosystem feature indirectly affecting detritus processing by influencing the structure of the detrital food web within the systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abelho, M., C. Cressa & M. Graça, 2005. Microbial biomass, respiration, and decomposition of Hura crepitans L. (Euphorbiaceae) leaves in a tropical stream. Biotropica 37(3): 397–402.

    Article  Google Scholar 

  • Anderson, M. J. & C. J. F. ter Braak, 2003. Permutation tests for multifactorial analysis of variance. Journal of Statistical Computation and Simulation 73: 85–113.

    Article  Google Scholar 

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVAþ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK: 214 pp.

    Google Scholar 

  • Ando, M., 1970. Litter fall and decomposition in some evergreen coniferous forests. Japanese Journal of Ecology 2: 1–19.

    Google Scholar 

  • Baldy, V., E. Chauvet, J. Y. Charcosset & M. O. Gessner, 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquatic Microbial Ecology 28: 25–36.

    Article  Google Scholar 

  • Barquìn, J. & R. G. Death, 2006. Spatial patterns of macroinvertebrate diversity in New Zealand springbrooks and rhithral streams. Journal of the North American Benthological Society 25: 768–786.

    Article  Google Scholar 

  • Basset, A. & D. S. Glazier, 1995. Resource limitation and intraspecific patterns of weight x length variation among spring detritivores. Hydrobiologia 316: 127–137.

    Article  Google Scholar 

  • Canhoto, C. & M. A. S. Graça, 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333: 79–85.

    Article  CAS  Google Scholar 

  • Chergui, H. & E. Pattee, 1990. The processing of leaves of trees and aquatic macrophytes in the network of the River Rhone. International Revue of Hydrobiology 75: 281–302.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth, UK: 190 pp.

    Google Scholar 

  • Cummins, K. W. & M. J. Klug, 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10: 147–172.

    Article  Google Scholar 

  • Dangles, O. & B. Malmqvist, 2004. Species richness–decomposition relationships depend on species dominance. Ecology Letters 7: 395–402.

    Article  Google Scholar 

  • Dumnicka, E., J. Galas & P. Koperski, 2007. Benthic invertebrates in karst springs: does substratum or location define communities? International Revue of Hydrobiology 92: 452–464.

    Article  Google Scholar 

  • Eichem, A. C., W. K. Dobbs, C. M. Tate & C. Edler, 1993. Microbial decomposition of Elm and Oak leaves in a karst aquifer. Applied and Environmental Microbiology 59: 3592–3596.

    CAS  PubMed  Google Scholar 

  • Findlay, S. G. & T. L. Arsuffi, 1989. Microbial growth and detritus transformations during decomposition of leaf litter in a stream. Freshwater Biology 21: 261–269.

    Article  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Brear Brook, New Hampshire an alternative approach to stream metabolism. Ecological Monographs 43: 421–439.

    Article  Google Scholar 

  • Galas, J., T. Bednarz, E. Dumnicka, A. Starzecka & K. Wojtan, 1996. Litter decomposition in mountain cave water. Archiv fur Hydrobiologie 138: 199–211.

    CAS  Google Scholar 

  • Gazzera, S. B., K. W. Cummins & G. Salmoiraghi, 1993. Elm and maple processing rates: comparisons between and within streams. Annales de Limnologie 29: 189–202.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85: 377–384.

    Article  Google Scholar 

  • Glazier, D. S., 1991. The fauna of North American temperate cold springs: patterns and hypotheses. Freshwater Biology 26: 527–542.

    Article  Google Scholar 

  • Glazier, D. S., 1998. Springs as model systems for ecology and evolutionary biology: a case study of Gammarus minus Say (Amphipoda) in Mid-Appalachian springs differing in pH and ionic content. In Botosaneanu, L. (ed.), Studies in crenobiology: the biology of springs and springbrooks. Backhuys, Leiden: 49–62.

    Google Scholar 

  • Glazier, D. S., 1999. Variation in offspring investment within and among populations of Gammarus minus Say (Crustacea: Amphipoda) in ten mid-Appalachian springs (U.S.A.). Archiv fur Hydrobiologie 146: 257–283.

    Google Scholar 

  • Glazier, D. S., 2009. Springs. In Likens, G. E. (ed.), Encyclopedia of inland waters. Elsevier, Oxford: 734–755.

    Chapter  Google Scholar 

  • Glazier, D. S. & J. L. Gooch, 1987. Macroinvertebrate assemblages in Pennsylvania (U.S.A.) springs. Hydrobiologia 150: 33–43.

    Article  CAS  Google Scholar 

  • Glazier, D. S., M. T. Horne & M. E. Lehman, 1992. Abundance, body composition and reproductive output of Gammarus minus (Crustacea: Amphipoda) in ten cold springs differing in pH and ionic content. Freshwater Biology 28: 149–163.

    Article  Google Scholar 

  • Graça, M. A. S., R. C. F. Ferreira & C. N. Coimbra, 2001. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20: 408–420.

    Article  Google Scholar 

  • Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), 2005. Methods to Study Litter Decomposition. A Practical Guide. Springer, Netherlands: 329 pp.

  • Hättenschwiler, S., A. V. Tiunov & S. Scheu, 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology and Systematics 36: 191–218.

    Article  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038.

    Article  Google Scholar 

  • Hooker, K. L. & G. R. Marzolf, 1987. Differential decomposition of leaves in grassland and gallery forest reaches of Kings Creek. Transactions of the Kansas Academy of Science 90: 17–24.

    Article  Google Scholar 

  • Horton, R. T. & A. V. Brown, 1991. Processing of green American Elm leaves in first, third and fifth order reaches of an Ozark stream. Journal of Freshwater Ecology 6: 115–119.

    Google Scholar 

  • Iversen, T. M., 1988. Secondary production and trophic relationships in a spring invertebrate community. Limnology and Oceanography 33: 582–592.

    Article  Google Scholar 

  • Jacobson, R. L. & D. Langmuir, 1970. The chemical history of some spring waters in carbonate rocks. Groundwater 8: 5–9.

    Google Scholar 

  • Jonsson, M. & B. Malmqvist, 2000. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89: 519–523.

    Article  Google Scholar 

  • Kodric-Brown, A. & J. H. Brown, 1993. Highly structured fish communities in Australian desert springs. Ecology 74: 1847–1855.

    Article  Google Scholar 

  • Longhi, D., M. Bartoli & P. Viaroli, 2008. Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquatic Botany 89: 303–310.

    Article  CAS  Google Scholar 

  • Mancinelli, G., M. L. Costantini & L. Rossi, 2002. Cascading effects of predatory fish exclusion on the detritus-based food web of a lake littoral zone (Lake Vico, central Italy). Oecologia 133: 402–411.

    Article  Google Scholar 

  • Mancinelli, G., M. L. Costantini & L. Rossi, 2007. Top-down control of reed detritus processing in a lake littoral zone: experimental evidence of a seasonal compensation between fish and invertebrate predation. International Revue of Hydrobiology 92: 117–134.

    Article  Google Scholar 

  • Matthews, W. J., J. J. Hoover & W. B. Milstead, 1985. Fishes of Oklahoma springs. Southwestern Naturalist 30: 23–32.

    Article  Google Scholar 

  • McArthur, J. V., J. M. Aho, R. B. Rader & G. L. Mills, 1994. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society 13: 57–67.

    Article  Google Scholar 

  • Menéndez, M., D. Carlucci, M. Pinna, F. A. Comin & A. Basset, 2003. Effect of nutrients on decomposition of Ruppia cirrhosa in a shallow coastal lagoon. Hydrobiologia 506–509: 729–735.

    Article  Google Scholar 

  • Minshall, G. W., 1967. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48: 139–149.

    Article  Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27: 55–112.

    Article  Google Scholar 

  • Petersen, R. C. & K. W. Cummins, 1974. Leaf processing in a woodland stream. Freshwater Biology 4: 343–368.

    Article  Google Scholar 

  • Post, D. M., M. L. Pace & N. G. Hairston Jr, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  CAS  PubMed  Google Scholar 

  • Prescott, C. E., L. M. Zabek, C. L. Staley & R. Kabzems, 2000. Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Canadian Journal of Forest Research 30: 1742–1750.

    Article  Google Scholar 

  • Quintino, V., F. Sangiorgio, F. Ricardo, R. Mamede, A. Pires, R. Freitas, A. M. Rodrigues & A. Basset, 2009. In situ experimental study of reed leaf decomposition along a full salinity gradient. Estuarine Coastal and Shelf Science 85: 497–506.

    Article  CAS  Google Scholar 

  • Ribas, A. C., A. De, M. O. Tanaka & A. L. T. De Souza, 2006. Evaluation of macrofaunal effects on leaf litter breakdown rates in aquatic and terrestrial habitats. Austral Ecology 31: 783–790.

    Article  Google Scholar 

  • Ruetz, C. R., R. M. Newman & B. Vondracek, 2002. Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown. Oecologia 132: 307–315.

    Article  Google Scholar 

  • Sangiorgio, F., M. Pinna & A. Basset, 2004. Inter- and intrahabitat variability of plant detritus decomposition in a transitional environment (Lake Alimini, Adriatic Sea). Chemistry and Ecology 20: 353–366.

    Article  Google Scholar 

  • Shanks, R. E. & J. S. Olson, 1961. First year breakdown of leaf litter in Southern Appalachian forest. Ecology 134: 194–195.

    CAS  Google Scholar 

  • Teal, J. H., 1957. Community metabolism in a temperate cold spring. Ecological Monographs 27: 283–302.

    Article  Google Scholar 

  • Thompson, P. L. & F. Bärlocher, 1989. Effect of pH on leaf breakdown in streams and in the laboratory. Journal of the North American Benthological Society 8: 203–210.

    Article  Google Scholar 

  • Vitousek, P. M., L. L. Hoope & H. Andersen (eds), 1995. Islands, Biological Diversity and Ecosystem Function. Springer, Berlin.

    Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wardle, D. A., O. Zackrisson, G. Hörnberg & C. Gallet, 1997. The influence of island area on ecosystem properties. Science 277: 1296–1297.

    Article  CAS  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Williams, L. R., M. Taylor & M. L. Warren Jr, 2003. Influence of fish predation on assemblage structure of macroinvertebrates in an intermittent stream. Transactions of the American Fisheries Society 132: 120–130.

    Article  Google Scholar 

  • Winkelmann, C., S. Worischka, J. H. E. Koop & J. Benndorf, 2007. Predation effects of benthivorous fish on grazing and shredding macroinvertebrates in a detritus-based stream food web. Limnologica 37: 121–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Sangiorgio.

Additional information

Handling editor: P. Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangiorgio, F., Glazier, D.S., Mancinelli, G. et al. How can habitat size influence leaf litter decomposition in five mid-Appalachian springs (USA)? The importance of the structure of the detritivorous guild. Hydrobiologia 654, 227–236 (2010). https://doi.org/10.1007/s10750-010-0390-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0390-9

Keywords

Navigation