Skip to main content

Advertisement

Log in

Evaluating the need for acid treatment prior to δ13C and δ15N analysis of freshwater fish scales: effects of varying scale mineral content, lake productivity and CO2 concentration

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to evaluate the need for using scale acidification to remove carbonates prior to stable isotope analysis, we compared acidified and non-acidified scales of six freshwater fish species (perch, roach, rudd, pike, tench and bream) with contrasting mineral content in their scales. Fish samples were taken from six lakes with variable trophic conditions, ranging from oligotrophic to hypertrophic, and differing in CO2 concentrations. The scale mineral content of the six species studied ranged between 31.8 and 61.3% dry weight (DW) in tench and perch, respectively. The elemental composition was characterised by high amounts of phosphorus, varying from 4.5 to 9.1% DW. The mineral fraction was dominated by apatite (range 24.4–49.2% DW), carbonates constituted a very small proportion of the total carbon content (average ± SD: 5.5 ± 1.7%). The average effect of acidification was very small for all species (average ± SD: 0.181 ± 0.122 and −0.208 ± 0.243 for carbon and nitrogen, respectively), albeit significant for five out of the six species (excepting tench that had the lowest mineral content). Linear regression slopes between acidified and untreated scales did not differ significantly from one for almost all the species and isotopes. The effects of acidification on the two isotopes were correlated with the relative carbonate content as well as with the CO2 concentration for carbon and total phosphorus for nitrogen. We conclude that the need for scale acidification depends on the different species and on the system studied, although in most cases the acidification effect will be biologically irrelevant. However, dual analysis of acidified and untreated scales may provide useful information on differences in stable isotope composition of dissolved inorganic carbon and on phytoplankton carbon fractionation generated by varying levels of CO2 availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blanco, A., S. Deudero & A. Box, 2009. Muscle and scale isotopic offset of three fish species in the Mediterranean Sea: Dentex dentex, Argyrosomus regius and Xyrichtys novacula. Rapid Communications in Mass Spectrometry 23: 2321–2328.

    Article  CAS  PubMed  Google Scholar 

  • Cerling, T. E., G. Wittemyer, H. B. Rasmussen, F. Vollrath, C. E. Cerling, T. J. Robinson & I. Douglas-Hamilton, 2006. Stable isotopes in elephant hair document migration patterns and diet changes. Proceedings of the National Academy of Sciences USA 103: 371–373.

    Article  CAS  Google Scholar 

  • Chandra, S., M. J. Vander Zanden, A. C. Heyvaert, B. C. Richards, B. C. Allen & C. R. Goldman, 2005. The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography 50: 1368–1376.

    Article  CAS  Google Scholar 

  • Chasar, L. C., J. P. Chanton, C. C. Koenig & F. C. Coleman, 2005. Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnology and Oceanography 50: 1059–1072.

    CAS  Google Scholar 

  • Chisholm, B. S., D. F. Nelson, K. A. Hobson, H. P. Schwarcz & M. Knyf, 1983. Carbon isotope measurement techniques for bone-collagen – notes for the archaeologist. Journal of Archaeological Science 10: 355–360.

    Article  Google Scholar 

  • Ehleringer, J. R., G. J. Bowen, L. A. Chesson, A. G. West, D. W. Podlesak & T. E. Cerling, 2008. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proceedings of the National Academy of Sciences USA 105: 2788–2793.

    Article  CAS  Google Scholar 

  • Elliott, J. C., 2002. Calcium phosphate biominerals. Phosphates: Geochemical, Geobiological, and Materials Importance 48: 427–453.

    CAS  Google Scholar 

  • Estep, M. L. F. & S. Vigg, 1985. Stable carbon and nitrogen isotope tracers of trophic dynamics in natural-populations and fisheries of the Lahontan lake system, Nevada. Canadian Journal of Fisheries and Aquatic Sciences 42: 1712–1719.

    Article  CAS  Google Scholar 

  • Estrada, J. A., M. Lutcavage & S. R. Thorrold, 2005. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Marine Biology 147: 37–45.

    Article  Google Scholar 

  • Fountoulakis, M. & H. W. Lahm, 1998. Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A 826: 109–134.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Berthou, E., C. Alcaraz, Q. Pou-Rovira, L. Zamora & G. Coenders, 2005. Introduction pathways and establishment rates of invasive aquatic species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 62: 453–463.

    Article  Google Scholar 

  • Gerdeaux, D. & M. E. Perga, 2006. Changes in whitefish scales δ13C during eutrophication and reoligotrophication of subalpine lakes. Limnology and Oceanography 51: 772–780.

    CAS  Google Scholar 

  • Gorokhova, E., S. Hansson, H. Hoglander & C. M. Andersen, 2005. Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143: 251–259.

    Article  PubMed  Google Scholar 

  • Grasshoff, K., 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim: 419 pp.

  • Grey, J., G. CT, J. R. Britton & C. Harrod, 2009. Stable isotope analysis of archived roach (Rutilus rutilus) scales for retrospective study of shallow lake responses to nutrient reduction. Freshwater Biology 54: 1663–1670.

    Article  CAS  Google Scholar 

  • Hutchinson, J. J. & C. N. Trueman, 2006. Stable isotope analyses of collagen in fish scales: limitations set by scale architecture. Journal of Fish Biology 69: 1874–1880.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & W. C. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Kelly, M. H., W. G. Hagar, T. D. Jardine & R. A. Cunjak, 2006. Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management 26: 921–925.

    Article  Google Scholar 

  • Kennedy, B. P., C. P. Chamberlain, J. D. Blum, K. H. Nislow & C. L. Folt, 2005. Comparing naturally occurring stable isotopes of nitrogen, carbon, and strontium as markers for the rearing locations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 62: 48–57.

    Article  CAS  Google Scholar 

  • Lee-thorp, J. A., J. C. Sealy & N. J. Vandermerwe, 1989. Stable carbon isotope ratio differences between bone-collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science 16: 585–599.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science, Amsterdam: 853 pp.

    Google Scholar 

  • Morbey, Y. E., K. Vascotto & B. J. Shuter, 2007. Dynamics of piscivory by lake trout following a smallmouth bass invasion: a historical reconstruction. Transactions of the American Fisheries Society 136: 477–483.

    Article  Google Scholar 

  • Perga, M. E. & D. Gerdeaux, 2003. Using the delta C-13 and delta N-15 of whitefish scales for retrospective ecological studies: changes in isotope signatures during the restoration of Lake Geneva, 1980–2001. Journal of Fish Biology 63: 1197–1207.

    Article  Google Scholar 

  • Perga, M. E. & D. Gerdeaux, 2004. Changes in the δ13C of pelagic food webs: the influence of lake area and trophic status on the isotopic signature of whitefish (Coregonus lavaretus). Canadian Journal of Fisheries and Aquatic Sciences 61: 1485–1492.

    Article  CAS  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Pruell, R. J., B. K. Taplin & K. Cicchelli, 2003. Stable isotope ratios in archived striped bass scales suggest changes in trophic structure. Fisheries Management and Ecology 10: 329–336.

    Article  Google Scholar 

  • Rennie, M. D., W. G. Sprules & T. B. Johnson, 2009. Resource switching in fish following a major food web disruption. Oecologia 159: 789–802.

    Article  PubMed  Google Scholar 

  • Satterfield, F. R. & B. P. Finney, 2002. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Progress in Oceanography 53: 231–246.

    Article  Google Scholar 

  • Seshaiya, R. V., P. Ambujabai & M. Kalyani, 1963. Amino acid composition of ichtylepidin from fish scales. In Ramachandran, G. N. (ed.), Aspects of Protein Structure. Proceedings of a Symposium Held in Madras, 14–18 January, University of Madras, Madras. Academic Press, New York: 343–349.

  • Sinnatamby, R. N., J. E. Bowman, J. B. Dempson & M. Power, 2007. An assessment of de-calcification procedures for delta C-13 and delta N-15 analysis of yellow perch, walleye and Atlantic salmon scales. Journal of Fish Biology 70: 1630–1635.

    Article  CAS  Google Scholar 

  • Sinnatamby, R. N., J. B. Dempson & M. Power, 2008. A comparison of muscle- and scale-derived delta C-13 and delta N-15 across three life-history stages of Atlantic salmon, Salmo salar. Rapid Communications in Mass Spectrometry 22: 2773–2778.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, C. T., P. K. Weber, J. J. Cech, B. L. Ingram, M. E. Conrad, M. V. Machavaram, A. R. Pogodina & R. L. Franklin, 2006. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63: 79–89.

    Article  CAS  Google Scholar 

  • Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. I. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.

    Article  CAS  Google Scholar 

  • Tohse, H. & Y. Mugiya, 2008. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquatic Biology 1: 259–268.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Scierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vander Zanden, M. J., C. R. Goldman, S. Chandra, B. C. Allen, J. E. Reuter & C. R. Goldman, 2003. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. Ecosystems 6: 274–288.

    Article  Google Scholar 

  • Vander Zanden, M. J., Y. Vadeboncoeur, M. W. Diebel & E. Jeppesen, 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Environmental Science & Technology 39: 7509–7515.

    Article  CAS  Google Scholar 

  • Ventura, M., 2006. Linking biochemical and elemental composition of freshwater and marine crustacean zooplankton. Marine Ecology Progress Series 327: 233–246.

    Article  CAS  Google Scholar 

  • Ventura, M. & E. Jeppesen, 2009. Effects of fixation on freshwater invertebrate carbon and nitrogen isotope composition and its arithmetic correction. Hydrobiologia 632: 297–308.

    Article  CAS  Google Scholar 

  • Ventura, M., L. Liboriussen, T. Lauridsen, M. Søndergaard, M. Søndergaard & E. Jeppesen, 2008. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshwater Biology 53: 1434–1452.

    Article  CAS  Google Scholar 

  • Wainright, S. C., M. J. Fogarty, R. C. Greenfield & B. Fry, 1993. Long-term changes in the Georges Bank food web – trends in stable isotopic compositions of fish scales. Marine Biology 115: 481–493.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Harris at the University of California for stable isotope analysis. K. Jensen, K.L. Thomsen and the late J. Stougaard-Pedersen are acknowledged for their assistance in sample collection. We are grateful to T. Buchaca, M. Rennie and two anonymous reviewers for very helpful comments on the manuscript. A.M. Poulsen assisted in editing the manuscript. M.V. was supported by a Marie Curie post-doctoral grant (MEIF-CT-2005-010554) and a Ramon y Cajal grant (Spanish Ministry of Education and Science). We also acknowledge the EU WISER project and “CLEAR” (a Villum Kann Rasmussen Centre of Excellence Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ventura.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventura, M., Jeppesen, E. Evaluating the need for acid treatment prior to δ13C and δ15N analysis of freshwater fish scales: effects of varying scale mineral content, lake productivity and CO2 concentration. Hydrobiologia 644, 245–259 (2010). https://doi.org/10.1007/s10750-010-0121-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0121-2

Keywords

Navigation