Skip to main content
Log in

Effect of single-species and mixed-species leaf leachate on bacterial communities in biofilms

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dissolved organic matter in the form of leaf leachate represents an important carbon and energy source in many lotic ecosystems. In this study, we investigated utilization of mono-specific and mixed-species leaf leachate and impacts on biofilm bacterial community structure. Ceramic tiles were incubated in a Northeast Ohio stream to allow for biofilm development and then exposed in the laboratory to glucose or leachate from: sugar maple (Acer saccharum), pin oak (Quercus palustris), maple + oak, American beech (Fagus grandifolia), witch hazel (Hamamelis virginiana), or beech + witch hazel. Bacterial responses to these amendments were compared to un-amended controls based on fluorescent in situ hybridization (FISH) targeting selected taxa and terminal restriction fragment length polymorphism (T-RFLP) of bacterial 16S rRNA genes; also changes in DOC concentrations were quantified. Generally, there were limited differences among communities as a result of leachate amendment, although specific taxa monitored by FISH exhibited differential responses. There was no evidence that mixing of leachate from different leaf species created an effect different than what could be expected based on monospecific experiments. Witch hazel solicited the greatest response, based on T-RFLP data, regardless of whether the community was exposed to witch hazel alone or witch hazel + beech, accounting for 19% of the variability in Jaccard distance (P < 0.05) and 27% of the variability in Hellinger distance among profiles. In conclusion, we found that leaf leachate can be readily degraded but only in some cases did differences in leaf leachate among tree species cause an alteration in community structure. Mixing of leachate from different leaf species did have an impact on DOC loss but did not alter community structure. The occurrence of particular compounds, such as those in witch hazel, may alter community structure suggesting that the presence and abundance of specific plant taxa can impact bacterial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amann, R. I., L. Krumholz & D. A. Stahl, 1990. Fluorescent-oligonucleotide probing of whole cells for determinative phylogenetic and environmental studies in microbiology. Journal of Bacteriology 172: 762–770.

    CAS  PubMed  Google Scholar 

  • Amann, R. I., W. Ludwig & K. H. Schleifer, 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews 59: 143–169.

    CAS  Google Scholar 

  • APHA (American Public Heath Association), 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Araya, R., K. Tanik, T. Takagi, N. Tamaguchi & M. Nasu, 2003. Bacterial activity and community composition in stream water and biofilms from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiology Ecology 43: 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Battin, T. J., L. A. Kapian, J. D. Newbold & C. M. E. Hansen, 2003. Contributions of microbial biofilms to ecosystem processed in stream mesocosms. Nature 426: 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Blackwood, C. B. & J. S. Buyer, 2007. Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities. Soil Biology and Biochemistry 39: 590–599.

    Article  CAS  Google Scholar 

  • Blackwood, C. B., A. Oaks & J. S. Buyer, 2005. Phylum- and class-specific PCR primers for general microbial community analysis. Applied and Environmental Microbiology 71: 6193–6198.

    Article  CAS  PubMed  Google Scholar 

  • Blackwood, C. B., C. J. Dell, A. J. M. Smucker & E. A. Paul, 2006. Eubacterial communities in soil macroaggregate environments and cropping systems. Soil Biology and Biochemistry 38: 720–728.

    Article  CAS  Google Scholar 

  • Bouvier, T. & P. A. Giorgio, 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiology Ecology 44: 3–15.

    Article  CAS  PubMed  Google Scholar 

  • Chappelle, F. H., 1993. Ground-Water Microbiology and Geochemistry. Wiley, New York.

    Google Scholar 

  • Cleveland, C. C., J. C. Neff, A. R. Townsend & E. Hood, 2004. Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7: 275–285.

    Article  CAS  Google Scholar 

  • Cos, P., T. D. Bruyne, N. Hermans, S. Apers, D. V. Berghe & A. J. Vlietinck, 2004. Proanthocyanidins in health care: current and new trends. Current medicinal chemistry 11: 1345–1359.

    CAS  PubMed  Google Scholar 

  • Cottrell, N. T. & D. L. Kirchman, 2000. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology 66: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  • Danovaro, R., G. M. Luna, A. D. Anno & B. Pietrangeli, 2006. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Applied and Environmental Microbiology 72: 5982–5989.

    Article  CAS  PubMed  Google Scholar 

  • DeLong, E. F., G. S. Wickham & N. R. Pace, 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363.

    Article  CAS  PubMed  Google Scholar 

  • Docherty, K. M., K. C. Young, P. A. Maurice & S. D. Bridgham, 2006. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microbial Ecology 52: 378–388.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, M., D. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28: 350–356.

    Article  CAS  Google Scholar 

  • Egli, T., 1995. The ecological and physiological significance of the growth of heterotrophic microorganisms with mixtures of substrates. In Jones, J. G. (ed.), Advances in Microbial Ecology. Plenum press, New York: 305–386.

    Google Scholar 

  • Eiler, A., S. Langenheder, S. Bertilsson & L. Tranvik, 2003. Heterotrophic bacterial growth efficiency and community structure at different natural organic concentrations. Applied and Environmental Microbiology 69: 3701–3709.

    Article  CAS  PubMed  Google Scholar 

  • Farjalla, V. F., D. A. Azevedo, F. A. Esteves, R. L. Bozelli, F. Roland & A. Enrich-Prast, 2006. Influence of hydrological pulse on bacterial growth and DOC uptake in a Clear-Water Amazonian Lake. Microbial Ecology 52: 334–344.

    Article  PubMed  Google Scholar 

  • Fierer, N., J. P. Schimel, R. G. Cats & J. Zou, 2001. Influence of balsam popular tannin fractions on carbon and nitrogen dynamics in Alaskan taiga floodplain soils. Soil Biology and Biochemistry 33: 1827–1839.

    Article  CAS  Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook. New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological monographs 43: 421–439.

    Article  Google Scholar 

  • Giller, P. & B. Malmqvist, 1998. The Biology of Rivers and Streams. Oxford University Press, Oxford.

    Google Scholar 

  • Gurung, T. B. & J. Urabe, 1999. Temporal and vertical difference in factors limiting growth rate of heterotrophic bacteria in Lake Biwa. Microbial Ecology 38: 136–145.

    Article  PubMed  Google Scholar 

  • Hall, J. R., 1995. Use of a stable carbon isotope addition to trace bacterial carbon through a stream food web. Journal of the North American Benthological Society 14: 269–277.

    Article  Google Scholar 

  • Juni, E., 1978. Genetics and physiology of Acinetobacter. Annual Reviews in Microbiology 32: 349–371.

    Article  CAS  Google Scholar 

  • Kent, A. D., D. J. Smith, B. J. Benson & E. W. Triplett, 2003. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and Environmental Microbiology 69: 6768–6776.

    Article  CAS  PubMed  Google Scholar 

  • Koetsier, P., J. V. McArthur & L. G. Leff, 1997. Spatial and temporal response of stream bacteria to sources of dissolved organic carbon in a blackwater stream system. Freshwater Biology 37: 79–89.

    Article  Google Scholar 

  • Leff, L. G., 2000. Longitudinal changes in microbial assemblages of the Ogeechee River. Freshwater Biology 43: 605–615.

    Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy multifacturial analysis: testing multispecies responses in ecological experiments. Ecological Monographs 69: 1–24.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformation for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Lessie, T. G. & T. Gaffney, 1986. Catabolic potential of Pseudomonas cepacia. In Sokatch, J. R. (ed.), The Bacteria: A Treatise on Structure and Function. Academic Press, New York: 439–481.

    Google Scholar 

  • Liu, J. & L. G. Leff, 2002. Temporal changes in the bacterioplankton of a Northeast Ohio (USA) river. Hydrobiologia 489: 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W. T., T. L. Marsh, H. Cheng & L. J. Forney, 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63: 4516–4522.

    CAS  PubMed  Google Scholar 

  • Manz, W., K. Wedt-Potthoff, T. R. Neu, U. Szewzyk & J. R. Lawrence, 1999. Phylogenetic composition, spatial structure, and dynamics of lotic bacterial biofilms investigated by flucorescent in situ hybridization and confocal laser scanning microscopy. Microbial Ecology 37: 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, T. L., 1999. Terminal-restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplicons. Current Opinion in Microbiology 2: 323–327.

    Article  CAS  PubMed  Google Scholar 

  • McArthur, J. V. & G. R. Marzolf, 1986. Interactions of the bacterial assemblages of a prairie stream with dissolved organic carbon from riparian vegetation. Hydrobiologia 134: 193–199.

    Article  CAS  Google Scholar 

  • McArthur, J. V., J. M. Aho, R. B. Rader & G. L. Mills, 1994. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society 13: 57–67.

    Article  Google Scholar 

  • McNamara, C. J. & L. G. Leff, 2004a. Response of biofilm bacteria to dissolved organic matter from decomposing maple leaves. Microbial Ecology 48: 324–330.

    Article  CAS  PubMed  Google Scholar 

  • McNamara, C. J. & L. G. Leff, 2004b. Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. Journal of the North American Benthological Society 23: 677–685.

    Article  Google Scholar 

  • Meyer, J. L., 1994. The microbial loop in flowing waters. Microbial Ecology 28: 195–199.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., J. W. Elwood, J. D. Newbold, J. R. Webster, L. A. Ferren & R. E. Perkins, 1984. Phosphorus uptake by decomposing leaf detritus: effect of microbial biomass and activity. Verhandlung Internationale Vereinigung Limnologie 22: 1899–1905.

    CAS  Google Scholar 

  • Münster, U., 1993. Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie van Leeuwenhoek 63: 243–274.

    Article  PubMed  Google Scholar 

  • Olapade, O. A. & L. G. Leff, 2004. Seasonal dynamics of bacterial assemblages in epilithic biofilms in a northeastern Ohio stream. Journal of the North American Benthological Society 23: 687–700.

    Article  Google Scholar 

  • Olapade, O. A. & L. G. Leff, 2005. Seasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments. Applied and Environmental Microbiology 71: 2278–2287.

    Article  CAS  PubMed  Google Scholar 

  • Olapade, O. A. & L. G. Leff, 2006. Influence of dissolved organic matter and inorganic nutrients on biofilm bacterial community on artificial substrates in a north-eastern Ohio stream (USA). Canadian Journal of Microbiology 52: 540–549.

    Article  PubMed  CAS  Google Scholar 

  • Pernthaler, J., O. F. Glöckner, A. A. Unterholzner, R. Psenner & R. Amann, 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Applied and Environmental Microbiology 64: 4299–4306.

    CAS  PubMed  Google Scholar 

  • Porter, K. S. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Rubin, M. A. & L. G. Leff, 2007. Nutrients and other abiotic factors affecting bacterial communities in an Ohio River (USA). Microbial Ecology 54: 374–383.

    Article  PubMed  Google Scholar 

  • Santmire, J. A. & L. G. Leff, 2007. The influence of stream sediment particular size on bacterial abundance and community composition. Aquatic Ecology 41: 153–160.

    Article  CAS  Google Scholar 

  • Sasaki, A., S. Shikenya & K. Takeda, 2007. Dissolved organic matter originating from the riparian shrub Salix gracilistyla. Journal of Forest Research 12: 68–74.

    Article  CAS  Google Scholar 

  • Schlief, J. & M. Mutz, 2007. Response of aquatic leaf associated microbial communities to elevated leachate DOC: a microcosm study. International Review of Hydrobiology 92: 146–155.

    Article  CAS  Google Scholar 

  • Singleton, V. L. & J. A. Rossi, 1965. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. American Journal of Enology and Viticulture 16: 144–158.

    CAS  Google Scholar 

  • Skoog, A., K. Whitehead, F. Sperling & K. Junge, 2002. Microbial glucose uptake and growth along a horizontal nutrient gradient in the North Pacific. Limnology and Oceanography 47: 1676–1683.

    CAS  Google Scholar 

  • Strauss, E. A. & G. A. Lamberti, 2002. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshwater Biology 47: 65–74.

    Article  CAS  Google Scholar 

  • Sun, L., E. M. Perdue, J. L. Meyer & J. Weis, 1997. Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnology and Oceanography 42: 714–721.

    CAS  Google Scholar 

  • Tourino, S., D. Lizarraga, S. Lorenzo, V. Ugartondo, M. Mitjans, M. P. Vinardell, L. Juliá, M. Cascante & J. L. Torres, 2008. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chemical Research in Toxicology 21: 696–704.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, T. A., G. G. Ganf & J. D. Brookes, 2008. A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshwater Biology 53: 1902–1913.

    Article  CAS  Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Article  Google Scholar 

  • Webster, J. R., J. B. Wallace & E. F. Benfield, 1995. Organic processes in streams of the eastern united states. In Cushing, C. E., K. W. Cummins & G. W. Minshall (eds), River and Stream Ecosystems. Elsevier Science BV, Amsterdam: 117–187.

    Google Scholar 

  • Wehr, J. D., J. Petersen & S. Findlay, 1999. Influence of three contrasting detrital carbon sources on planktonic bacterial metabolism in a mesotrophic lake. Microbial Ecology 37: 23–35.

    Article  CAS  PubMed  Google Scholar 

  • Wetzel, R. G., 1992. Gradient dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia 229: 181–198.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to C. Clevinger, R. Vukanti, and L. Feinstein for their assistance and financial support from China scholarship fund (2006A62008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wu.

Additional information

Handling editor: L. Naselli-Flores

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 30 kb)

(DOC 48 kb)

(DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Blackwood, C.B. & Leff, L.G. Effect of single-species and mixed-species leaf leachate on bacterial communities in biofilms. Hydrobiologia 636, 65–76 (2009). https://doi.org/10.1007/s10750-009-9935-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9935-1

Keywords

Navigation