Skip to main content
Log in

Effects of travertine and flow on leaf retention in Fossil Creek, Arizona

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Leaf retention is important in transferring energy from riparian trees to stream food webs. Retention increases with geomorphic complexity such as substrate coarseness, sinuosity, and the presence of debris dams. High discharge can reduce retention, particularly when streams lack physical trapping features. Travertine formations, caused by calcium carbonate deposition, can alter stream morphology. To date, however, we know of no study testing the effect of travertine on leaf retention. This study capitalized on a river restoration project in Fossil Creek, Arizona, where water was returned to the channel after a century of diversion. We examined how the fixed factors Flow (before and after restoration) and Morphology (travertine and riffle-pool sites) affected leaf retention. Leaf retention was higher in sites where travertine forms barriers across the river, relative to sites with riffle-pool morphology. Most leaves retained in travertine reaches were concentrated at the bottom of pools formed between dams. Although flow restoration did not alter retention rates across all sites, it diminished them at travertine sites, indicating an interaction between stream flow and morphology. We conclude that stream complexity and leaf retention are enhanced by travertine deposition but that high discharge can reduce the retentive capacity of in-stream structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes, I., 1965. Geochemistry of Birch Creek, Inyo County, California: a travertine depositing creek in an arid climate. Geochimica et Cosmochimica Acta 29: 85–112.

    Article  CAS  Google Scholar 

  • Bernhardt, E. S., M. A. Palmer, J. D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, B. Powell & E. Sudduth, 2005. Synthesizing U.S. river restoration efforts. Science 308: 636–637.

    Article  PubMed  CAS  Google Scholar 

  • Brookshire, E. N. & K. A. Dwire, 2003. Controls on patterns of coarse organic particle retention in headwater streams. Journal of the North American Benthological Society 22: 17–34.

    Article  Google Scholar 

  • Carter, C. D. & J. C. Marks, 2007. Influences of travertine dam formation on leaf litter decomposition and algal accrual. Hydrobiologia 575: 329–341.

    Article  Google Scholar 

  • Casas, J. J. & M. O. Gessner, 1999. Leaf litter breakdown in a Mediterranean stream characterized by travertine precipitation. Freshwater Biology 41: 781–793.

    Article  Google Scholar 

  • Ehrman, T. P. & G. A. Lamberti, 1992. Hydraulic and particulate matter retention in a 3rd-order Indiana stream. Journal of the North American Benthological Society 11: 341–349.

    Article  Google Scholar 

  • Emeis, K., H. Richnow & S. Kempe, 1987. Travertine formation in Plitvice National Park, Yugoslavia: chemical versus biological control. Sedimentology 34: 595–609.

    Article  CAS  Google Scholar 

  • Graca, M. A., 2001. The role of invertebrates on leaf litter decomposition in streams—a review. International Review of Hydrobiology 86: 383–393.

    Article  Google Scholar 

  • Hammer, Ø., D. K. Dysthe & B. Jamtveit, 2007. The dynamics of travertine dams. Earth and Planetary Science Letters 256: 258–263.

    Article  CAS  Google Scholar 

  • Hart, D., T. Johnson, K. Bushaw-Newton, R. Horwitz, A. Bednarek, D. Charles, D. Kreeger & D. Velinsky, 2002. Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52: 669–681.

    Article  Google Scholar 

  • Hoover, T. M., J. S. Richardson & N. Yonemitsu, 2006. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshwater Biology 51: 435–447.

    Article  Google Scholar 

  • JMP IN, 1989–2003. Academic version 5.1, SAS Institute, Inc., Cary, North Carolina.

  • Jones, J. B. Jr. & L. A. Smock, 1991. Transport and retention of particulate organic matter in two low-gradient headwater streams. Journal of the North American Benthological Society 10: 115–126.

    Article  Google Scholar 

  • Kempe, S. & K. Emeis, 1985. Carbonate chemistry and the formation of Plitvice Lakes. Mitteilungen des Geologisch-Paläontologischen Instituts der Universität Hamburg 58: 351–383.

    Google Scholar 

  • Kershner, J. L., E. K. Archer, E. K. Coles-Ritchie, E. R. Cowley, R. C. Henderson, K. Kratz, C. M. Quimby, D. L. Turner, L. C. Ulmer & M. R. Vinson, 2004. Guide to effective monitoring of aquatic and riparian resources. United States Department of Agriculture, Forest Service. General Technical Report RMRS-GTR-121.

  • Laasonen, P., T. Muotka & I. Kivijarvi, 1998. Recovery of macroinvertebrate communities from stream habitat restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 101–113.

    Article  Google Scholar 

  • Laitung, B., J. Pretty, E. Chauvet & M. Dobson, 2002. Response of aquatic hyphomycete communities to enhanced stream retention in areas impacted by commercial forestry. Freshwater Biology 47: 313–323.

    Article  Google Scholar 

  • Lamberti, G. A. & S. V. Gregory, 1996. Transport and retention of CPOM. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology, 1st ed. Academic Press, Inc, San Diego, California: 216–229.

    Google Scholar 

  • LeRoy, C. J. & J. C. Marks, 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology 51: 605–617.

    Article  Google Scholar 

  • Lu, G., C. Zheng, R. J. Donahoe & W. B. Lyons, 2000. Controlling processes in a CaCO3 precipitating stream in Huanglong Natural Scenic District, Sichuan, China. Journal of Hydrology 230: 34–54.

    Article  CAS  Google Scholar 

  • Malusa, J., S. Overby & R. Parnell, 2003. Potential for travertine formation: Fossil Creek, Arizona. Applied Geochemistry 18: 1081–1093.

    Article  CAS  Google Scholar 

  • Marks, J. C., 2007. Down go the dams. Scientific American 296: 66–71.

    Article  PubMed  Google Scholar 

  • Marks, J. C., R. Parnell, C. Carter, E. C. Dinger & G. A. Haden, 2006. Interactions between geomorphology and ecosystem processes in travertine streams: implications for decommissioning a dam on Fossil Creek, Arizona. Geomorphology 77: 299–307.

    Article  Google Scholar 

  • Miliša, M., I. Habdija, B. Prime-Habdija, I. Radanović & R. Matoničkin Kepčija, 2006. The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia). Hydrobiologia 553: 231–243.

    Article  Google Scholar 

  • Muehlbauer, J. D., C. J. LeRoy, J. M. Lovett, K. K. Flaccus, J. K. Vlieg & J. C. Marks, 2009. Short-term responses of decomposers to flow restoration in Fossil Creek, Arizona, USA. Hydrobiologia 618: 35–45.

    Article  Google Scholar 

  • Muotka, T. & P. Laasonen, 2002. Ecosystem recovery in restored headwater streams: the role of enhanced leaf retention. Journal of Applied Ecology 39: 145–156.

    Article  Google Scholar 

  • Overby, S. & D. Neary, 1996. Travertine geomorphology of Fossil Creek. Proceedings of the 1996 Meeting of the Hydrology Section of the Arizona-Nevada Academy of Science.

  • Palmer, M. A., E. S. Bernhardt, J. D. Allan, P. S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad Shah, D. J. Galat, S. Gloss, P. Goodwin, D. H. Hart, B. Hassett, R. Jenkinson, G. M. Kondolf, R. Lave, J. L. Meyer, T. K. O’Donnell, L. Pagano, P. Srivastava & E. Sudduth, 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208–217.

    Article  Google Scholar 

  • Pentecost, A., 2003. Cyanobacteria associated with hot spring travertines. Canadian Journal of Earth Sciences 40: 1447–1457.

    Article  CAS  Google Scholar 

  • Pentecost, A., G. F. Peterken & H. C. Viles, 2000. The travertine dams of Slade Brook, Gloucestershire: their formation and conservation. Geology Today 16: 22–25.

    Google Scholar 

  • Platts, W., W. Megahan & G. Minshall, 1983. Methods for evaluating stream, riparian and biotic conditions. U.S.D.A. Forest Service, General Technical Report INT-138. Intermountain Forest and Range Experiment Station, Ogden, Utah.

  • Pollard, A. I. & T. Reed, 2004. Benthic invertebrate assemblage change following dam removal in a Wisconsin stream. Hydrobiologia 513: 51–58.

    Article  Google Scholar 

  • Raikow, D. F., S. A. Grubbs & K. W. Cummins, 1995. Debris dam dynamics and coarse particulate organic matter retention in an Appalachian Mountain stream. Journal of the North American Benthological Society 14: 535–546.

    Article  Google Scholar 

  • Schade, J. & S. G. Fisher, 1997. Leaf litter in a Sonoran Desert stream ecosystem. Journal of the North American Benthological Society 16: 612–626.

    Article  Google Scholar 

  • Stumm, W. & J. Morgan (eds), 1970. Aquatic chemistry. John Wiley Publishing, New York, New York.

    Google Scholar 

  • Tarragó, J., P. Sansberro, R. Filip, P. López, A. González, C. Luna & L. Mroginski, 2004. Effect of leaf retention and flavonoids on rooting of Ilex paraguariensis cuttings. Scientia Horticulturae 103: 479–488.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Webster, J., E. Benfield, T. Ehrman, M. Schaeffer, J. Tank, J. Hutchens & D. D’ Angelo, 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biology 41: 687–705.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following organizations for financial support: National Science Foundation (Ecosystem and Ecology Panels), Nina Mason Pulliam Charitable Trust, and the Ecological Restoration Institute at Northern Arizona University. The Meriam-Powell Center for Environmental Research provided access to their lab and equipment and The Arboretum at Flagstaff kindly contributed a portion of our leaves. Additionally, Leonard Sklar’s research group at San Francisco State University helped with morphological measurements. Finally, the project could not have been completed without help from James Weatherill, Greg Hitzroth, Katherine Sides, Stephen Penrod, David Sides, Hadley Austin, Brenda Harrop, Ken and Tina Adams, Eric Dinger, Jacob and Matthew Higgins, Kathryn Skinner, Chris Cooper, Mari Olson, Rhett, Catherine, Josh and Nancy Eisenberg, Jerry Harris, James Roemer, Olive Mier-Holland and Robert, Sandra, Cady, and Wright Mier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zacchaeus G. Compson.

Additional information

Handling editor: Darren Ryder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compson, Z.G., Mier, M.Z. & Marks, J.C. Effects of travertine and flow on leaf retention in Fossil Creek, Arizona. Hydrobiologia 630, 187–197 (2009). https://doi.org/10.1007/s10750-009-9791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9791-z

Keywords

Navigation