Skip to main content
Log in

Evaluation of target strength–fish length equation choices for estimating estuarine fish biomass

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Gulf of Mexico (GOM), fish biomass estimates are necessary for the evaluation of habitat use and function following the mandate for ecosystem-based fisheries management in the recently reauthorized Sustainable Fisheries Act of 2007. Acoustic surveys have emerged as a potential tool to estimate fish biomass in shallow-water estuaries, however, the transformation of acoustic data into an index of fish biomass is not straightforward. In this article, we examine the consequences of equation selection for target strength (TS) to fish length relationships on potential error generation in hydroacoustic fish biomass estimates. We applied structural equation models (SEMs) to evaluate how our choice of an acoustic TS–fish length equation affected our biomass estimates, and how error occurred and propagated during this process. To demonstrate the magnitude of the error when applied to field data, we used SEMs on normally distributed simulated data to better understand the sources of error involved with converting acoustic data to fish biomass. As such, we describe where, and to what magnitude, error propagates when estimating fish biomass. Estimates of fish lengths were affected by measurement errors of TS, and from inexact relationships between fish length and TS. Differences in parameter estimates resulted in significant differences in fish biomass estimates and led to the conclusion that in the absence of known TS–fish length relationships, Love’s (J Acoust Soc Am 46:746–752, 1969) lateral-aspect equation may be an acceptable substitute for an ecosystem-specific TS–fish length relationship. Based upon SEMs applied to simulated data, perhaps the most important, yet most variable, component is the mean volume backscattering strength, which significantly inflated biomass errors in approximately 10% of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, Y. C., C. A. Wilson, H. R. Roberts & J. Supan, 2005. High resolution mapping and classification of oyster habitats in nearshore Louisiana using sidescan sonar. Estuaries 28: 435–446.

    Google Scholar 

  • Arhonditsis, G. B., C. A. Stowb, L. J. Steinbergc, M. A. Kenneya, R. C. Lathropd, S. J. McBridea & K. H. Reckhowa, 2006. Exploring ecological patterns with structural equation modeling and Bayesian analysis. Ecological Modelling 192: 385–409.

    Article  Google Scholar 

  • Barletta, M., A. Barletta-Bergan, U. Saint-Paul & G. Hubold, 2003. Seasonal changes in density, biomass, and diversity of estuarine fishes in tidal mangrove creeks of the lower Caeté Estuary (northern Brazilian coast, east Amazon). Marine Ecology Progress Series 256: 217–228.

    Article  Google Scholar 

  • Barras, J. A., S. Beville, D. Britsch, S. Hartley, S. Hawes, J. Johnson, P. Kemp, Q. Kinler, A. Martucci, J. Porthouse, D. Reed, K. Roy, S. Sapkota & J. Suhayada, 2003. Historical and projected coastal Louisiana land changes: 1978–2050. USGS Open File Report 03-334.

  • Benaka, L. (ed.), 1999. Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Symposium 22, Bethesda, MD.

  • Benoit-Bird, K. J., W. W. Au & C. D. Kelley, 2003. Acoustic backscattering by Hawaiian lutjanid snappers. I. Target strength and swimbladder characteristics. Journal of the Acoustical Society of America 114: 2757–2766.

    Article  PubMed  Google Scholar 

  • Boesch, D. F. & R. E. Turner, 1984. Dependence of fishery species on salt marshes: The role of food and refuge. Estuaries 7: 460–468.

    Article  Google Scholar 

  • Boswell, K. M. & C. A. Wilson, 2008. Side-aspect target strength measurements of bay anchovy (Anchoa mitchilli) and Gulf menhaden (Brevoortia patronus) derived from ex situ experiments. ICES Journal of Marine Science 65. doi:10.1093/icesjms/fsn065.

  • Boswell, K. M., M. W. Miller & C. A. Wilson, 2007a. A lightweight transducer platform for use in stationary shallow water horizontal-aspect acoustic surveys. Fisheries Research 85: 291–294.

    Article  Google Scholar 

  • Boswell, K. M., M. P. Wilson & C. A. Wilson, 2007b. Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana. Estuaries and Coasts 30: 607–617.

    Google Scholar 

  • Bozeman, E. L. & J. M. Dean, 1980. The abundance of estuarine larval and juvenile fish in a South Carolina intertidal creek. Estuaries 3: 89–97.

    Article  Google Scholar 

  • Brandt, S. B., 1996. Acoustic assessment of fish abundance and distribution. In Hubert, W.A. & D.W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda, MD: 385–432.

    Google Scholar 

  • Buncher, C. R., P. A. Succop & K. N. Dietrich, 1991. Structural equation modeling in environmental risk assessment. Environmental Health Perspectives 90: 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2001. Model selection and multimodal inference: A practical information-theoretic approach, 2nd ed. Springer.

  • Conner, W. H. & J. W. Day, 1987. Description of the basin. In Conner, W. H. & J. W. Day (eds), The Ecology of Barataria Basin, Louisiana. U.S. Fish and Wildlife Service Biological Report 85 (7.13), 1–7.

  • Dahl, T. E., 2000. Status and Trends of Wetlands in the Conterminous United States 1986 to 1997. U.S. Department of the Interior, Fish and Wildlife Service, Washington DC.

    Google Scholar 

  • Dahlgren, C. P., G. T. Kellison, A. J. Adams, B. M. Gillanders, M. S. Kendall, C. A. Layman, J. A. Ley, I. Nagelkerken & J. E. Serafy, 2006. Marine nurseries and effective juvenile habitats: Concepts and applications. Marine Ecology Progress Series 312: 291–295.

    Article  Google Scholar 

  • Edgar, G. J. & C. Shaw, 1995. The production and trophic ecology of shallow-water fish assemblages in southern Australia II. Diets of fishes and trophic relationships between fishes and benthos at Western Port, Victoria. Journal of Experimental Marine Biology and Ecology 194: 107–131.

    Article  Google Scholar 

  • Foote, K. G., 1987. Fish target strengths for use in echo-integrator surveys. Journal of the Acoustical Society of America 82: 981–987.

    Article  Google Scholar 

  • Frouzova, J., J. Kubecka, H. Balk & J. Frouz, 2005. Target strength of some European fish species and its dependence on fish body parameters. Fisheries Research 5: 86–96.

    Article  Google Scholar 

  • Gelwick, F. P., S. Akin, D. A. Arrington & K. O. Winemiller, 2001. Fish assemblage structure in relation to environmental variation in a Texas Gulf coastal wetland. Estuaries 24: 285–296.

    Article  Google Scholar 

  • Gough, L. & J. B. Grace, 1999. Effects of environmental change on plant species density: Comparing predictions with experiments. Ecology 80: 882–890.

    Google Scholar 

  • Grace, J. B., 2006. Structural Equation Modeling and Natural Systems. Cambridge University Press, New York, NY.

    Google Scholar 

  • Hartman, K. J. & B. W. Nagy, 2005. A target strength and length relationship for striped bass and white perch. Transactions of the American Fisheries Society 134: 375–380.

    Article  Google Scholar 

  • Hayduck, L. A., 1987. Structural Equation Modeling with LISREL: Essentials and Advances. The Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Hazen, E. L. & J. K. Horne, 2003. A method for evaluating the effects of biological factors on fish target strength. ICES Journal of Marine Science 60: 555–562.

    Article  Google Scholar 

  • Herke, W. H., E. E. Knudsen, P. A. Knudsen & B. D. Rogers, 1992. Effects of semi-impoundment of Louisiana marsh on fish and crustacean nursery use and export. North American Journal of Fisheries Management 12: 151–160.

    Article  Google Scholar 

  • Horne, J. K., 2003. The influence of ontogeny, physiology, and behaviour on the target strength of walleye pollock (Theragra chalcogramma). ICES Journal of Marine Science 60: 1063–1074.

    Article  Google Scholar 

  • Houde, E. D. & E. S. Rutherford, 1993. Recent trends in estuarine fisheries: Predictions of fish production and yield. Estuaries 16: 161–176.

    Article  Google Scholar 

  • Hoyle, R. H. (ed.), 1995. Structural Equation Modeling. SAGE Publications, Inc., Thousand Oaks, CA.

    Google Scholar 

  • Hoyle, R. T. & G. T. Smith, 1994. Formulating clinical research hypotheses as structural equation models: A conceptual overview. Journal of Consulting and Clinical Psychology 62: 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Hubert, W. A., 1996. Passive capture techniques. In Murphy, B. R. & D. W. Willis (eds), Fisheries Techniques, 2nd ed. American Fisheries Society, Bethesda, MD, 157–192.

    Google Scholar 

  • Hung, N. T., T. Asaeda & J. Manatunge, 2007. Modeling interactions of submersed plant biomass and environmental factors in a stream using structural equation modeling. Hydrobiologia 583: 183–193.

    Article  CAS  Google Scholar 

  • Jackson, B. J., 2004. Changes in biomass production and diets of bay anchovy, Atlantic croaker, and spot in Mobile Bay over seasons, and as a result of wind-driven resuspension events. M.S. Thesis, University of South Alabama,173 pp.

  • Jech, J. M. & J. K. Horne, 2002. Three-dimensional visualization of fish morphometry and acoustic backscatter. Acoustic Research Letters Online 3(1): 35–40 (ojps.aip.org/ARLO).

    Google Scholar 

  • Jones, R. F., D. M. Baltz & R. L. Allen, 2002. Patterns of resource use by fishes and macroinvertebrates in Barataria Bay, Louisiana. Marine Ecology Progress Series 237: 271–289.

    Article  Google Scholar 

  • Jung, S. & E. D. Houde, 2005. Spatial and temporal variabilities of pelagic fish community structure and distribution in Chesapeake Bay, USA. Estuarine, Coastal and Shelf Science 58: 335–351.

    Article  CAS  Google Scholar 

  • Krumme, U. & A. Hanning, 2005. A floating device for stationary hydroacoustic sampling in shallow waters. Fisheries Research 73: 377–381.

    Article  Google Scholar 

  • Krumme, U. & U. Saint-Paul, 2003. Observations of fish migration in a macrotidal mangrove channel in northern Brazil using a 200-kHz split-beam sonar. Aquatic Living Resources 16: 175–184.

    Article  Google Scholar 

  • Kubecka, J. & M. Wittingerova, 1998. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fisheries Research 35: 99–106.

    Article  Google Scholar 

  • Lourakis, M. L. A. & A. A. Argyros, 2005. Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? Computer Visions 2: 1526–1531.

    Google Scholar 

  • Love, R. H, 1969. Maximum side-aspect target strength of an individual fish. Journal of the Acoustical Society of America 46: 746–752.

    Article  Google Scholar 

  • Luo, J. & S. B. Brandt, 1993. Bay anchovy Anchoa mitchilli production and consumption in mid-Chesapeake Bay based on a bioenergetics model and acoustic measures of fish abundance. Marine Ecology Progress Series 98: 223–236.

    Article  Google Scholar 

  • MacLennan, D. N., P. G. Fernandes & J. Dalen, 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science 59: 365–369.

    Article  Google Scholar 

  • Manderson, J. P., J. Pessutti, P. Shaheen & F. Juanes, 2006. Dynamics of early juvenile winter flounder predation risk on a North West Atlantic estuarine nursery ground. Marine Ecology Progress Series 328: 249–265.

    Article  Google Scholar 

  • Martinho, F., R. Leitao, J. M. Neto, H. N. Cabral, J. C. Marques & M. A. Pardal, 2007. The use of nursery areas by juvenile fish in a temperate estuary, Portugal. Hydrobiologia 587: 281–290.

    Article  Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands. Van Nostrand Reinhold, New York, 539 pp.

  • Ona, E., 1990. Physiological factors causing natural variations in acoustic target strength of fish. Journal of the Marine Biological Association of the UK 70: 107–127.

    Article  Google Scholar 

  • Peterson, M. S. & S. T. Ross, 1991. Dynamics of littoral fishes and decapods along a coastal river-estuarine gradient. Estuarine, Coastal and Shelf Science 33: 467–483.

    Article  Google Scholar 

  • Pedersen, B. & M. V. Trevorrow, 1999. Continuous monitoring of fish in a shallow channel using a fixed horizontal sonar. Journal of the Acoustical Society of America 105: 3126–3135.

    Article  Google Scholar 

  • Rozas, L. P. & T. J. Minello, 1998. Nekton use of salt marsh, seagrass, and nonvegetated habitats in a south Texas (USA) estuary. Bulletin of Marine Science 63: 481–501.

    Google Scholar 

  • Rozas, L. P. & D. J. Reed, 1994. Comparing nekton assemblages of subtidal habitats in pipeline canals traversing brackish and saline marshes in coastal Louisiana. Wetlands 14: 262–275.

    Article  Google Scholar 

  • Rozas, L. P. & R. J. Zimmerman, 2000. Small-scale patterns of nekton use among marsh and adjacent shallow non-vegetated areas of the Galveston Bay Estuary, Texas (USA). Marine Ecology Progress Series 193: 217–239.

    Article  Google Scholar 

  • Shenker, M. & J. M. Dean, 1979. The utilization of an intertidal salt marsh creek by larval and juvenile fishes: Abundance, diversity and temporal variation. Estuaries 2: 154–163.

    Article  Google Scholar 

  • Simmonds, E. J. & D. N. MacLennan, 2005. Fisheries Acoustics: Theory and Practice, 2nd ed. Blackwell Science, Oxford.

    Google Scholar 

  • Stockwell, J. D., D. L. Yule, T. R. Hrabik, J. V. Adams, O. T. Gorman & B. V. Holbrook, 2007. Vertical distribution of fish biomass in Lake Superior: Implications for day bottom trawl surveys. North American Journal of Fisheries Management 27: 735–749.

    Article  Google Scholar 

  • Trevorrow, M. V., 1998. Boundary scattering limitations to fish detection in shallow waters. Fisheries Research 35: 127–135.

    Article  Google Scholar 

  • Wright, S. P., 1998. Multivariate analysis using the MIXED Procedure. In Proceedings of the 38th Meeting of SAS Users Group International. Paper 229.

Download references

Acknowledgements

Funding for this project was provided by the Sport Fish Restoration Fund administered through the Louisiana Department of Wildlife and Fisheries. We would like to thank A.J. Fischer, B.T. Halloran, D.L. Nieland, and R.J.D. Wells for their contributions to this work and M.M. Sutor for review of an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Boswell.

Additional information

Handling editor: M. Power

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boswell, K.M., Kaller, M.D., Cowan, J.H. et al. Evaluation of target strength–fish length equation choices for estimating estuarine fish biomass. Hydrobiologia 610, 113–123 (2008). https://doi.org/10.1007/s10750-008-9425-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9425-x

Keywords

Navigation