Skip to main content
Log in

Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As a result of increased anthropogenic nitrogen (N) loading in surface waters of agricultural watersheds, there is enhanced interest to understand and quantify N removal mechanisms. Denitrification, an important N removal mechanism in aquatic systems, may contribute to reducing N pollution in agricultural headwater streams. However, the key factors controlling this process in lotic systems remain unclear. The objective of our study was to examine the factors regulating rates of denitrification in the sediments of agricultural headwater streams in the mid-western USA. Denitrification rates were variable among streams and treatments (<0.1–28.0 μg N g AFDM−1 h−1) and on average, were higher than those reported for similar headwater streams. Carbon quantity and quality, and pH had no effect on denitrification, while temperature and nitrate ( \( {\text{NO}}^{ - }_{{\text{3}}} \)) concentrations had a positive effect on rates of denitrification. Specifically, \( {\text{NO}}^{ - }_{{\text{3}}} \) controlled denitrification following Michaelis-Menten kinetics. We calculated a value of km (1.0 mg \( {\text{NO}}^{ - }_{{\text{3}}} \)-N L-1) that was comparable to other studies in aquatic sediments but was well below the median in-stream \( {\text{NO}}^{ - }_{{\text{3}}} \) concentrations (5.2–17.4 mg \( {\text{NO}}^{ - }_{{\text{3}}} \)-N L−1) observed at the study sites. Despite high rates of denitrification, this removal mechanism is most likely \( {\text{NO}}^{ - }_{{\text{3}}} \) saturated in the agricultural headwater streams we examined, suggesting that these systems are not effective at removing in-stream N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, R. B., R. A. Smith & G. E. Schwarz, 2000. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403: 758–761.

    Article  PubMed  CAS  Google Scholar 

  • Almeida, J., A. Reiss & M. Carrondo, 1995. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas flourescens. Biotechnology and Bioengineering 46: 476–484.

    Article  CAS  PubMed  Google Scholar 

  • Ambus, P., 1993. Control of denitrification enzyme activity in a streamside soil. FEMS Microbiology Ecology 102: 225–234.

    Article  CAS  Google Scholar 

  • American Public Health Administration, 1998. Standard Methods for the Examination of Water and Wastewater. 18th ed. APHA, Washington D.C.

    Google Scholar 

  • Baeseman, J. L., R. L. Smith & J. Silverstein, 2006. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microbial Ecology 51: 232–241.

    Article  PubMed  CAS  Google Scholar 

  • Bernot, M. J., W. K. Dodds, W. S. Gardner, M. J. McCarthy, D. Sobolev & J. L. Tank, 2003. Comparing denitrification estimates for a Texas estuary by using acetylene inhibition and membrane inlet mass spectrometry. Applied and Environmental Microbiology 69: 5950–5956.

    Article  PubMed  CAS  Google Scholar 

  • Bernot, M. J., J. L. Tank, T. V. Royer & M. B. David, 2006. Nutrient uptake in streams draining agricultural catchments of the Midwestern United States. Freshwater Biology 51: 499–509.

    Article  CAS  Google Scholar 

  • Boyer, E. W., R. B. Alexander, W. J. Parton, C. Li, K. Butterbach-Bahl, S. D. Donner, R. W. Skaggs & S. J. Del Grossoh, 2006. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecological Applications 16: 2123–2142.

    Article  PubMed  Google Scholar 

  • Buchanan, T. J. & W. P. Somers, 1969. Discharge Measurements at Gauging Stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chap. A8, pp. 65.

  • Burkhart, M. R. & D. E. James, 1999. Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. Journal of Environmental Quality 28: 850–859.

    Google Scholar 

  • Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley & V. H. Smith, 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Duff, J. H., F. J. Triska & R. S. Oremland, 1984. Denitrification associated with stream periphyton: chamber estimates from undirsrupted communities. Journal of Environmental Quality 13: 514–518.

    CAS  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1999. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography 44: 1993–1999.

    CAS  Google Scholar 

  • Galloway, J. N. & E. B. Cowling, 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 72–78.

    Article  Google Scholar 

  • García-Ruiz, R., S. N. Pattinson & B. A. Whitton, 1998. Kinetic parameters of denitrification in a river continuum. Applied and Environmental Microbiology 64: 2533–2538.

    PubMed  Google Scholar 

  • Glass, C. & J. Silverstein, 1998. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research 32: 831–839.

    Article  CAS  Google Scholar 

  • Goolsby, D. A., W. A. Battaglin, G. B. Lawrence, R. S. Artz, B. T. Aulenbach, R. P. Hooper, D. R. Keeney & G. J. Stensland, 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin. Topic 3 report for the Integrated Assessment on Hypoxia in the Gulf of Mexico, Decision Analysis Ser. 17. NOAA Coastal Ocean Office, Silver Spring, MD.

  • Groffman, P. M., M. A. Altabet, J. K. Böhlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen & M. A. Voytek, 2006. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications 16: 2091–2122.

    Article  PubMed  Google Scholar 

  • Herrman, K. S., 2007. Mechanisms controlling nitrogen removal in agricultural headwater streams. Ph.D. Dissertation. The Ohio State University.

  • Holmes, R. M., J. B. Jones, S. G. Fisher & N. B. Grimm, 1996. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33: 125–146.

    Article  Google Scholar 

  • Hordijk, C. A., M. Schnieder, J. M. van Engelen & T. E. Cappenberg, 1987. Estimation of bacterial nitrate reduction rates at in situ concentrations in freshwater sediments. Applied and Environmental Microbiology 53: 217–223.

    PubMed  CAS  Google Scholar 

  • Inwood, S. E., J. L. Tank & M. J. Bernot, 2005. Patterns of denitrification associated with land use in 9 midwestern headwater streams. Journal of the North American Benthological Society 24: 227–245.

    Article  Google Scholar 

  • Kemp, M. J. & W. K. Dodds, 2002. Comparisons of nitrification and denitrification in prairie and agriculturally influenced streams. Ecological Applications 12: 998–1009.

    Article  Google Scholar 

  • Knowles, R., 1982. Denitrification. Microbiological Reviews 46: 43–70.

    PubMed  CAS  Google Scholar 

  • Knowles, R., 1990. Acetylene Inhibition Techniques: Development, Advantages, and Potential Problems. Denitrification in Soil and Sediment. Plenum Press, New York, NY.

    Google Scholar 

  • Laverman, A. M., P. Van Cappellen, D. van Rotterdam-Los, C. Pallud & J. Abell, 2006. Potential rates and pathways of microbial nitrate reduction in coastal sediments. FEMS Microbiology Ecology 58: 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Maag, M., M. Mainovsky & S. M. Nielsen, 1997. Kinetics and temperature dependence of potential denitrification in riparian soils. Journal of Environmental Quality 26: 215–223.

    CAS  Google Scholar 

  • Martin, L. A., P. J. Mulholland, J. R. Webster & H. M. Valett, 2001. Denitrification potential in sediments of headwater streams in the southern Appalachian Mountains, USA. Journal of the North American Benthological Society 20: 505–519.

    Article  Google Scholar 

  • Mitsch, W. J., J. W. Day Jr., J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall & N. Wang, 2001. Reducing nitrogen loading to the Gulf of Mexico from the Mississippi River Basin: strategies to counter a persistent ecological problem. BioScience 51: 373–388.

    Article  Google Scholar 

  • Napier, J. & R. Bustamante, 1988. In-situ biodenitrification of the S-3 ponds. Environmental Progress 7: 13–16.

    Article  CAS  Google Scholar 

  • Ohio EPA, 2002. Total Maximum Daily Loads for the Sugar Creek Basin: Division of Surface Water, Columbus, OH.

  • Oremland, R. S., C. Umberger, C. W. Culbertsen & R. L. Smith, 1984. Denitrification in San Francisco Bay intertidal sediments. Applied and Environmental Microbiology 47: 1106–1112.

    PubMed  CAS  Google Scholar 

  • Peterson, B. J., W. M. Wollheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, E. Martí, W. B. Bowden, H. M. Valett, A. E. Hershey, W. H. McDowell, W. K. Dodds, S. K. Hamilton, S. Gregory & D. D. Morall, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Pfenning, K. S. & P. B. McMahon, 1996. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. Journal of Hydrology 187: 283–295.

    Article  Google Scholar 

  • Piña-Ochoa, E. & M. Álvarez-Cobelas, 2006. Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81: 111–130.

    Article  CAS  Google Scholar 

  • Rabalais, N. N., R. E. Turner & W. J. Wiseman Jr., 2002. Gulf of Mexico hypoxia, a.k.a. “The dead zone.” Annual Review of Ecological Systems 33: 235–263.

    Article  Google Scholar 

  • Risgaard-Petersen, N., & K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42: 529–537.

    CAS  Google Scholar 

  • Risgaard-Petersen, N., 2003. Coupled nitrification–denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnology and Oceanography 48: 93–105.

    CAS  Google Scholar 

  • Royer, T. V., J. L. Tank & M. B. David, 2004. Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environmental Quality 33: 1296–1304.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, J. L., T. V. Royer, M. B. David & T. L. Tank, 2004. Denitrification associated with plants and sediments in an agricultural stream. Journal of the North American Benthological Society 23: 667–676.

    Article  Google Scholar 

  • Schipper, L. A., A. B. Cooper, C. G. Harfoot & W. J. Dyck, 1993. Regulators of denitrification in an organic riparian soil. Soil Biology and Biochemistry 25: 925–933.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography 33: 702–724.

    Article  CAS  Google Scholar 

  • Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. B. Alexander, G. Billen, R. W. Howarth, B. Mayer & N. van Breemen, 2002. Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry, 57–58, 199–237.

    Article  Google Scholar 

  • Tiedje, J. S., 1982. Denitrification. Methods of Soil Analysis, Part II. American Society of Agronomy: Soil Science Society of America, Madison, Wisconsin.

    Google Scholar 

  • Wang, J., B. Baltzis & G. Lewandowski, 1995. Fundamental denitrification kinetic studies with Pseudomonas denitrificans. Biotechnology and Bioengineering 47: 27–41.

    Article  Google Scholar 

  • Ward, M. H., S. D. Mark, K. P. Cantor, D. D. Weisenburger, A. Correa-Villaseñor & S. H. Zahm, 1996. Drinking water nitrate and the risk of non-Hodgkin’s lymphoma. Epidemiology 7: 465–471.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers and the Associate Editor for their valuable comments on the manuscript. Special thanks to Lance Williams, Anne Carey, and Tom Koontz whose suggestions greatly improved the manuscript. We would also like to thank Gwen Dubelko, Becky Fauver, and Nickla Louisy for assistance in the laboratory and the field, and Scott Long for obtaining site permissions. This research was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (award # 2005-35102-16325) and the Water Resources Research Institute of the USGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle S. Herrman.

Additional information

Handling editor: D. Ryder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrman, K.S., Bouchard, V. & Moore, R.H. Factors affecting denitrification in agricultural headwater streams in Northeast Ohio, USA. Hydrobiologia 598, 305–314 (2008). https://doi.org/10.1007/s10750-007-9164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-007-9164-4

Keywords

Navigation