Skip to main content
Log in

Genetic diversity of common carp from two largest Chinese lakes and the Yangtze River revealed by microsatellite markers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Six polymorphic microsatellites (eight loci) were used to study the genetic diversity and population structure of common carp from Dongting Lake (DTC), Poyang Lake (PYC), and the Yangtze River (YZC) in China. The gene diversity was high among populations with values close to 1. The number of alleles per locus ranged from 2 to 11, and the average number of alleles among 3 populations ranged from 6.5 to 7.9. The mean observed (H O) and expected (H E) heterozygosity ranged from 0.4888 to 0.5162 and from 0.7679 to 0.7708, respectively. Significant deviations from Hardy–Weinberg Equilibrium expectation were found at majority of the loci and in all three populations in which heterozygote deficits were apparent. The analysis of molecular variance (AMOVA) indicated that the percent of variance among populations and within populations were 3.03 and 96.97, respectively. The Fst values between populations indicated that there were significant genetic differentiations for the common carp populations from the Yangtze River and two largest Chinese freshwater lakes. The factors that may result in genetic divergence and significant reduction of the observed heterozygosity were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf F. W. and Phelps S. R. (1980). Loss of genetic variation in hatchery stock of cutthroat trouts. Transactions of American Fisheries Society 109: 537–543

    Article  Google Scholar 

  • Balloux F. and Lugon-Moulin N. (2002). The estimation of population differentiation with microsatellite markers. Molecular Ecology 11: 155–165

    Article  PubMed  Google Scholar 

  • Bártfai R., Egedi S., Yue G. H., Kovács B., Urbányi B., Horváth L. and Orbán L. (2003). Genetic analysis of two common carp broodstocks by RAPD and microsatellite markers. Aquaculture 219: 157–167

    Article  CAS  Google Scholar 

  • Belkhir, K. & F. Bonhomme, 2002. PartitionML: a maximum likelihood estimation of the best partition of a sample into panmictic units. Montpellier, France: Université de Montpellier. Available at http://www.univ-montp2.fr/~genetix/partitionml.htm

  • Brookfield J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5: 453–455

    Article  PubMed  CAS  Google Scholar 

  • Brown B. L., Franklin D. E., Gaffney P. M., Hong M. and Kornfield I. (2000). Characterization of microsatellite loci in the eastern oyster, Crassostrea virginica. Molecular Ecology 9: 2217–2219

    CAS  Google Scholar 

  • Castric V., Bernatchez L., Belkhir K. and Bonhomme F. (2002). Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypotheses. Heredity 89: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Chen D., Liu S., Duan X. and Xiong F. (2002). A preliminary study of the fisheries biology of main commercial fishes in the middle and upper reaches of the Yangtze River. Acta Hydrobiologica Sinica 26: 618–622

    Google Scholar 

  • Crooijmans R. P. M. A., Bierbooms V. A. F., Komen J. and Groenen M. A. M. (1997). Microsatellite markers in common carp (Cyprinus carpio L.). Animal Genetics 28: 129–134

    Article  CAS  Google Scholar 

  • David L., Rajasekaran P., Fang J., Hillel J. and Lavi U. (2001). Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers. Molecular Genetics and Genomics 266: 353–362

    Article  PubMed  CAS  Google Scholar 

  • David L., Blum S., Feldman M. W., Lavi U. and Hillel J. (2003). Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite Loci. Molecular Biology and Evolution 20: 1425–1434

    Article  PubMed  CAS  Google Scholar 

  • Desvignes J. F., Laroche J., Durand J. D. and Bouvet Y. (2001). Genetic variability in reared stocks of common carp (Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture 194: 291–301

    Article  CAS  Google Scholar 

  • Excoffier L., Smouse P. E. and Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Goudet J. (2002). FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3.2). Institute of Ecology, University of Lausanne, Switzerland

    Google Scholar 

  • Guo S. and Thompson E. (1992). Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Hartl D. L. and Clark A. G. (1997). Principles of Population Genetics. Sinauer Associates, Inc, Sunderland, MA

    Google Scholar 

  • Kohlmann K., Gross R., Murakaeva A. and Kersten P. (2003). Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquatic Living Resource 16: 421–431

    Article  Google Scholar 

  • Kohlmann K., Kersten P. and Flajšhans M. (2005). Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 247: 253–266

    Article  CAS  Google Scholar 

  • Kumar S., Tamura K., Jakobsen I. B. and Nei M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Launey S. and Hedgecock D. (2001). High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159: 255–265

    PubMed  CAS  Google Scholar 

  • Lehoczky I., Magyary I., Hancz C. and Weiss S. (2005). Preliminary studies on the genetic variability of six Hungarian common carp strains using microsatellite DNA markers. Hydrobiologia 533: 223–228

    Article  Google Scholar 

  • Liao F., He W., Huang X., Jing Q. and He X. (2002). Studies on present situation and change trend of Dongting Lake fishery resources and environment. Acta Hydrobiologica Sinica 26: 623–627

    Google Scholar 

  • Liao X., Yu X., Tan D. and Tong J. (2005). Microsatellite DNA analysis of genetic diversity of grass carp in Yangtze River system. Acta Hydrobiologica Sinica 29: 113–119

    CAS  Google Scholar 

  • Lu G., Li S. and Bernatchez L. (1997). Mitochondrial DNA diversity, population structure, and conservation genetics of four native carps within the Yangtze River, China. Canadian Journal of Fisheries and Aquatic Sciences 54: 47–58

    Article  CAS  Google Scholar 

  • Nei M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Qian X., Huang C., Wang Y. and Xiong F. (2002). The status of fishery resources of Poyang Lake and its environmental monitoring. Acta Hydrobiologica Sinica 26: 612–617

    Google Scholar 

  • Reynolds J., Weirs B. S. and Cockerham C. C. (1983). Estimation for the coancestry coefficient: basis for a short-term genetic distance. Genetics 105: 767–779

    PubMed  Google Scholar 

  • Rice W. R. (1989). Analyzing tables of statistical tests. Evolution 43: 223–225

    Article  Google Scholar 

  • Ryman N. and Stahl G. (1980). Genetic changes in hatchery stocks of brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 37: 82–87

    Article  Google Scholar 

  • Schneider S., Roessli D. and Excoffier L. (2000). Arlequin: a Software for Population Genetics Data Analysis, Version 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Switzerland

    Google Scholar 

  • Tanck M. W. T., Baars H. C. A., Kohlmann K. and Komen J. (2000). Genetic characterization of wild Dutch common carp (Cyprinus carpio L.). Aquaculture Research 31: 779–783

    Article  Google Scholar 

  • Tong J. and Wu Q. (2001). Sequence conservation on segments of mitochondrial 16S rRNA and Cytochrome b in strains of common carp (Cyprinus carpio L. var.). Acta Hydrobiologica Sinica 25: 54–60

    CAS  Google Scholar 

  • Tong J., Yu X. and Liao X. (2005). Characterization of a highly conserved microsatellite marker with utility potentials in cyprinid fishes. Journal of Applied Ichthyology 21: 232–235

    Article  CAS  Google Scholar 

  • Weir B. S. and Cockerham C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370

    Article  Google Scholar 

  • Zhang J., Fan Q. and Wang W. (1998). Study on the population dynamics of common carp in Laojianghe Lake, a breed resources pool of four main kinds of Chinese carps. Journal of Huazhong Agriculture University 17: 395–400

    CAS  Google Scholar 

  • Zhou J., Wu Q., Wang Z. and Ye Y. (2004). Genetic variation analysis within and among six varieties of common carp (Cyprinus carpio L.) in China using microsatellite markers. Russian Journal of Genetics (Genetika) 40: 1144–1148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingou Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, X., Yu, X. & Tong, J. Genetic diversity of common carp from two largest Chinese lakes and the Yangtze River revealed by microsatellite markers. Hydrobiologia 568, 445–453 (2006). https://doi.org/10.1007/s10750-006-0222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0222-0

Keywords

Navigation