Skip to main content

Advertisement

Log in

Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Metabolic syndrome (MetS) includes different metabolic conditions (i.e. abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension) that concour in the development of cardiovascular disease and diabetes. MetS individuals often show adverse cardiac remodeling and myocardial dysfunction even in the absence of overt coronary artery disease or valvular affliction. Diastolic impairment and hypertrophy are hallmarks of MetS-related cardiac remodeling and represent the leading cause of heart failure with preserved ejection fraction (HFpEF). Altered cardiomyocyte function, increased neurohormonal tone, interstitial fibrosis, coronary microvascular dysfunction, and a myriad of metabolic abnormalities have all been implicated in the development and progression of adverse cardiac remodeling related to MetS. However, despite the enormous amount of literature produced on this argument, HF remains a leading cause of morbidity and mortality in such population. The early detection of initial adverse cardiac remodeling would enable the optimal implementation of effective therapies aiming at preventing the progression of the disease to the symptomatic phase. Beyond conventional imaging techniques, such as echocardiography, cardiac tomography, and magnetic resonance, novel post-processing tools and techniques provide information on the biological processes that underlie metabolic heart disease. In this review, we summarize the pathophysiology of MetS-related cardiac remodeling and illustrate the relevance of state-of-the-art multimodality cardiac imaging to identify and quantify the degree of myocardial involvement, prognosticate long-term clinical outcome, and potentially guide therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

CBF :

Coronary blood flow

CFR :

Coronary flow reserve

FE :

Ejection fraction

LA :

Left atrial

LAVI :

Left atrial volume index

GLS :

Global longitudinal strain

MBF :

Microvascular blood flow

MRS :

Magnetic resonance spectroscopy

TRV :

Tricuspid regurgitation velocity

References

  1. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  CAS  PubMed  Google Scholar 

  2. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  3. Groenewegen A, Rutten FH, Mosterd A et al (2020) Epidemiology of heart failure. Eur J Heart Fail 22:1342–1356

    Article  PubMed  Google Scholar 

  4. Wenzl FA, Ambrosini S, Mohammed SA et al (2021) Inflammation in metabolic cardiomyopathy. Front Cardiovasc Med 8:1194

    Article  CAS  Google Scholar 

  5. Timmis A, Townsend N, Gale C et al (2018) European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J 39:508–579

    Article  PubMed  Google Scholar 

  6. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428

    Article  CAS  PubMed  Google Scholar 

  7. Brietzke SA (2007) Controversy in diagnosis and management of the metabolic syndrome. Med Clin North Am 91:1041–1061

    Article  CAS  PubMed  Google Scholar 

  8. Reaven GM, Banting lecture, (1988) Role of insulin resistance in human disease. Diabetes 1988(37):1595–1607

    Article  Google Scholar 

  9. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    Article  PubMed  CAS  Google Scholar 

  10. O’Neill S, O’Driscoll L (2015) Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 16:1–12

    Article  PubMed  Google Scholar 

  11. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults. JAMA 287:356

    Article  PubMed  Google Scholar 

  12. Ward ZJ, Bleich SN, Cradock AL et al (2019) Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med 381:2440–50

  13. Leppert MH, Poisson SN, Sillau SH et al (2019) Is prevalence of atherosclerotic risk factors increasing among young adults? It depends on how you ask. J Am Heart Assoc 8. https://doi.org/10.1161/JAHA.118.010883

  14. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20:12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ogurtsova K, da Rocha Fernandes JD, Huang Y et al (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  CAS  PubMed  Google Scholar 

  16. Gami AS, Witt BJ, Howard DE et al (2007) Metabolic syndrome and risk of incident cardiovascular events and death. J Am Coll Cardiol 49:403–414

    Article  CAS  PubMed  Google Scholar 

  17. Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2:231–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tune JD, Goodwill AG, Sassoon DJ et al (2017) Cardiovascular consequences of metabolic syndrome. Transl Res 183:57–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bird SR, Hawley JA (2017) Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. https://doi.org/10.1136/bmjsem-2016-000143

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kastorini C-M, Milionis HJ, Esposito K et al (2011) The effect of Mediterranean diet on metabolic syndrome and its components. J Am Coll Cardiol 57:1299–1313

    Article  CAS  PubMed  Google Scholar 

  21. Harrington M, Gibson S, Cottrell RC (2009) A review and meta-analysis of the effect of weight loss on all-cause mortality risk. Nutr Res Rev 22:93–108

    Article  PubMed  Google Scholar 

  22. Haufe S, Utz W, Engeli S et al (2012) Left ventricular mass and function with reduced-fat or reduced-carbohydrate hypocaloric diets in overweight and obese subjects. Hypertension 59:70–75

    Article  CAS  PubMed  Google Scholar 

  23. Obert P, Gueugnon C, Nottin S et al (2013) Impact of diet and exercise training-induced weight loss on myocardial mechanics in severely obese adolescents. Obesity 21:2091–2098

    Article  PubMed  Google Scholar 

  24. Algahim MF, Lux TR, Leichman JG et al (2010) Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med 123:549–555

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cuspidi C, Rescaldani M, Tadic M et al (2014) Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am J Hypertens 27:146–156

    Article  PubMed  Google Scholar 

  26. Unger T, Borghi C, Charchar F et al (2020) 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension 75:1334–1357

    Article  CAS  PubMed  Google Scholar 

  27. Cosentino F, Grant PJ, Aboyans V et al (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 41:255–323

    Article  PubMed  Google Scholar 

  28. Guertl B, Noehammer C, Hoefler G (2000) Metabolic cardiomyopathies. Int J Exp Pathol 81:349–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200

    Article  PubMed  Google Scholar 

  30. Turkbey EB, McClelland RL, Kronmal RA et al (2010) The impact of obesity on the left ventricle. JACC Cardiovasc Imaging 3:266–274

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cuspidi C, Rescaldani M, Sala C et al (2014) Left-ventricular hypertrophy and obesity. J Hypertens 32:16–25

    Article  CAS  PubMed  Google Scholar 

  32. Oh GC, Cho H-J (2020) Blood pressure and heart failure. Clin Hypertens 26:1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yap J, Tay WT, Teng TK et al (2019) Association of diabetes mellitus on cardiac remodeling, quality of life, and clinical outcomes in heart failure with reduced and preserved ejection fraction. J Am Heart Assoc 8. https://doi.org/10.1161/JAHA.119.013114

  34. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction. J Am Coll Cardiol 62:263–271

    Article  PubMed  Google Scholar 

  35. de Simone G, Izzo R, Chinali M et al (2010) Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension 56:99–104

    Article  PubMed  CAS  Google Scholar 

  36. Tsioufis C, Kokkinos P, MacManus C et al (2010) Left ventricular hypertrophy as a determinant of renal outcome in patients with high cardiovascular risk. J Hypertens 28:2299–2308

    Article  CAS  PubMed  Google Scholar 

  37. Lam CSP, Roger VL, Rodeheffer RJ et al (2009) Pulmonary hypertension in heart failure with preserved ejection fraction. J Am Coll Cardiol 53:1119–1126

    Article  PubMed  PubMed Central  Google Scholar 

  38. Seferović PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36:1718–1727

    Article  PubMed  Google Scholar 

  39. Savji N, Meijers WC, Bartz TM et al (2018) The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Hear Fail 6:701–709

    Article  Google Scholar 

  40. Ho KKL, Pinsky JL, Kannel WB et al (1993) The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 22:A6-13

    Article  Google Scholar 

  41. Ikram MA, Brusselle GGO, Murad SD et al (2017) The Rotterdam Study: 2018 update on objectives, design and main results. Eur J Epidemiol 32:807–850

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bytyçi I, Bajraktari G (2015) Mortality in heart failure patients. Anadolu Kardiyol Dergisi/The Anatol J Cardiol 15:63–68

    Article  CAS  Google Scholar 

  43. Kenchaiah S, Gaziano JM, Vasan RS (2004) Impact of obesity on the risk of heart failure and survival after the onset of heart failure. Med Clin North Am 88:1273–1294

    Article  PubMed  Google Scholar 

  44. Shah KS, Xu H, Matsouaka RA et al (2017) Heart failure with preserved, borderline, and reduced ejection fraction. J Am Coll Cardiol 70:2476–2486

    Article  PubMed  Google Scholar 

  45. Chan MMY, Lam CSP (2013) How do patients with heart failure with preserved ejection fraction die? Eur J Heart Fail 15:604–613

    Article  PubMed  Google Scholar 

  46. Vaduganathan M, Patel RB, Michel A et al (2017) Mode of death in heart failure with preserved ejection fraction. J Am Coll Cardiol 69:556–569

    Article  PubMed  Google Scholar 

  47. Chen J, Normand SLT, Wang Y et al (2011) National and regional trends in heart failure hospitalization and mortality rates for medicare beneficiaries, 1998–2008. JAMA - J Am Med Assoc 306:1669–1678

    Article  CAS  Google Scholar 

  48. Lau Y-F, Yiu K-H, Siu C-W et al (2012) Hypertension and atrial fibrillation: epidemiology, pathophysiology and therapeutic implications. J Hum Hypertens 26:563–569

    Article  CAS  PubMed  Google Scholar 

  49. Lavie CJ, Pandey A, Lau DH et al (2017) Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis. J Am Coll Cardiol 70:2022–2035

    Article  PubMed  Google Scholar 

  50. Ugowe FE, Jackson LR, Thomas KL (2019) Atrial fibrillation and diabetes mellitus. Circ Arrhythmia Electrophysiol 12. https://doi.org/10.1161/CIRCEP.119.007351

  51. Wong CX, Sullivan T, Sun MT et al (2015) Obesity and the risk of incident, post-operative, and post-ablation atrial fibrillation. JACC Clin Electrophysiol 1:139–152

    Article  PubMed  Google Scholar 

  52. Jonk AM, Houben AJHM, De Jongh RT et al (2007) Microvascular dysfunction in obesity: a potential mechanism in the pathogenesis of obesity-associated insulin resistance and hypertension. Physiology 22:252–260

    Article  CAS  PubMed  Google Scholar 

  53. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  54. Crea F, Camici PG, Bairey Merz CN (2014) Coronary microvascular dysfunction: an update. Eur Heart J 35:1101–1111

    Article  PubMed  Google Scholar 

  55. Ong P, Camici PG, Beltrame JF et al (2018) International standardization of diagnostic criteria for microvascular angina. Int J Cardiol 250:16–20

    Article  PubMed  Google Scholar 

  56. Pepine CJ, Anderson RD, Sharaf BL et al (2010) Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia. J Am Coll Cardiol 55:2825–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murthy VL, Naya M, Foster CR et al (2012) Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126:1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lusis AJ, Attie AD, Reue K (2008) Metabolic syndrome: from epidemiology to systems biology. Nat Rev Genet 9:819–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Poirier P, Giles TD, Bray GA et al (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Circulation 113:898–918

    Article  PubMed  Google Scholar 

  60. Regitz-Zagrosek V, Lehmkuhl E, Weickert MO (2006) Gender differences in the metabolic syndrome and their role for cardiovascular disease. Clin Res Cardiol 95:147–147

    Article  Google Scholar 

  61. Gesta S, Tseng Y-H, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256

    Article  CAS  PubMed  Google Scholar 

  62. Bozkurt B, Aguilar D, Deswal A et al (2016) Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation 134. https://doi.org/10.1161/CIR.0000000000000450

  63. Gluckman PD (2004) Living with the past: evolution, development, and patterns of disease. Science(80- ) 305:1733–6

  64. Doria A, Patti M-E, Kahn CR (2008) The emerging genetic architecture of type 2 diabetes. Cell Metab 8:186–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling. Circulation 128:388–400

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spach MS, Boineau JP (1997) Microfibrosis produces electrical load variations due to loss of side- to-side cell connections: a major mechanism of structural heart disease arrhythmias. PACE - Pacing Clin Electrophysiol 20:397–413

    Article  CAS  PubMed  Google Scholar 

  67. Kai H, Mori T, Tokuda K et al (2006) Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res 29:711–718

    Article  CAS  PubMed  Google Scholar 

  68. Scirica BM, Braunwald E, Raz I et al (2014) Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.114.010389

    Article  PubMed  PubMed Central  Google Scholar 

  69. Held C, Gerstein HC, Yusuf S et al (2007) Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation 115:1371–1375

    Article  CAS  PubMed  Google Scholar 

  70. MacDonald MR, Petrie MC, Varyani F et al (2008) Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 29:1377–1385

    Article  PubMed  Google Scholar 

  71. Kristensen SL, Mogensen UM, Jhund PS et al (2017) Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction. Circulation 135:724–735

    Article  PubMed  Google Scholar 

  72. Marwick TH, Ritchie R, Shaw JE et al (2018) Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol 71:339–351

    Article  PubMed  Google Scholar 

  73. Dei Cas A, Khan SS, Butler J et al (2015) Impact of diabetes on epidemiology, treatment, and outcomes of patients with heart failure. JACC Hear Fail 3:136–145

    Article  Google Scholar 

  74. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy. Circ Res 122:624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peterson LR, Herrero P, Schechtman KB et al (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109:2191–2196

    Article  PubMed  Google Scholar 

  76. Mouton AJ, Li X, Hall ME et al (2020) Obesity, hypertension, and cardiac dysfunction. Circ Res 126:789–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chokshi A, Drosatos K, Cheema FH et al (2012) Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 125:2844–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alexopoulos N, McLean DS, Janik M et al (2010) Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210:150–154

    Article  CAS  PubMed  Google Scholar 

  79. Djaberi R, Schuijf JD, van Werkhoven JM et al (2008) Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol 102:1602–1607

    Article  PubMed  Google Scholar 

  80. Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  81. Higuchi Y, McTiernan CF, Frye CB et al (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-α–induced cardiomyopathy. Circulation 109:1892–1897

    Article  CAS  PubMed  Google Scholar 

  82. Ng ACT, Strudwick M, van der Geest RJ et al (2018) Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function. Circ Cardiovasc Imaging 11. https://doi.org/10.1161/CIRCIMAGING.117.007372

  83. Iacobellis G, Ribaudo MC, Zappaterreno A et al (2004) Relation between epicardial adipose tissue and left ventricular mass. Am J Cardiol 94:1084–1087

    Article  PubMed  Google Scholar 

  84. Iacobellis G, Leonetti F, Singh N et al (2007) Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 115:272–273

    Article  PubMed  Google Scholar 

  85. Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao L, Harrop DL, Ng ACT et al (2018) Epicardial adipose tissue is associated with left atrial dysfunction in people without obstructive coronary artery disease or atrial fibrillation. Can J Cardiol 34:1019–1025

    Article  PubMed  Google Scholar 

  87. Pries AR, Reglin B (2016) Coronary microcirculatory pathophysiology: can we afford it to remain a black box. Eur Heart J ehv760.

  88. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    Article  CAS  PubMed  Google Scholar 

  89. Schulz E, Gori T, Münzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 34:665–673

    Article  CAS  PubMed  Google Scholar 

  90. Pries AR, Badimon L, Bugiardini R et al (2015) Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 36:3134–3146

    Article  CAS  PubMed  Google Scholar 

  91. Suzuki H, Takeyama Y, Koba S et al (1994) Small vessel pathology and coronary hemodynamics in patients with microvascular angina. Int J Cardiol 43:139–150

    Article  CAS  PubMed  Google Scholar 

  92. Crea F, Bairey Merz CN, Beltrame JF et al (2016) The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J ehw461

  93. Pepine CJ, Petersen JW, Bairey Merz CN (2014) A microvascular-myocardial diastolic dysfunctional state and risk for mental stress ischemia. JACC Cardiovasc Imaging 7:362–365

    Article  PubMed  Google Scholar 

  94. Pieske B, Tschöpe C, De Boer RA et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317

    Article  PubMed  Google Scholar 

  95. Shah AM, Cikes M, Prasad N et al (2019) Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 74:2858–2873

    Article  CAS  PubMed  Google Scholar 

  96. Ruddox V, Mathisen M, Bækkevar M et al (2013) Is 3D echocardiography superior to 2D echocardiography in general practice? Int J Cardiol 168:1306–1315

    Article  PubMed  Google Scholar 

  97. Bicudo LS, Tsutsui JM, Shiozaki A et al (2008) Value of real time three-dimensional rchocardiography in patients with hypertrophic cardiomyopathy: comparison with two-dimensional echocardiography and magnetic resonance imaging. Echocardiography 25:717–726

    Article  PubMed  Google Scholar 

  98. Zeidan Z, Erbel R, Barkhausen J et al (2003) Analysis of global systolic and diastolic left ventricular performance using volume-time curves by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 16:29–37

    Article  PubMed  Google Scholar 

  99. Kraigher-Krainer E, Shah AM, Gupta DK et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:447–456

    Article  PubMed  Google Scholar 

  100. Shah AM, Claggett B, Sweitzer NK et al (2015) Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 132:402–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Afonso L, Kondur A, Simegn M et al (2012) Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses. BMJ Open 2. https://doi.org/10.1136/bmjopen-2012-001390

  102. Ng ACT, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.110.955542

    Article  PubMed  Google Scholar 

  103. Dokainish H, Sengupta R, Pillai M et al (2008) Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol 101:1504–1509

    Article  PubMed  Google Scholar 

  104. Liu Y, Wang K, Su D et al (2014) Noninvasive assessment of left atrial phasic function in patients with hypertension and diabetes using two-dimensional speckle tracking and volumetric parameters. Echocardiography 31:727–735

    Article  PubMed  Google Scholar 

  105. Antoni ML, ten Brinke EA, Marsan NA et al (2011) Comprehensive assessment of changes in left atrial volumes and function after ST-segment elevation acute myocardial infarction: role of two-dimensional speckle-tracking strain imaging. J Am Soc Echocardiogr 24:1126–1133

    Article  PubMed  Google Scholar 

  106. Obokata M, Negishi K, Kurosawa K et al (2013) Incremental diagnostic value of LA strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging 6:749–758

    Article  PubMed  Google Scholar 

  107. Smiseth OA, Donal E, Penicka M et al (2021) How to measure left ventricular myocardial work by pressure–strain loops. Eur Hear J - Cardiovasc Imaging 22:259–261

    Article  Google Scholar 

  108. Kuznetsova T, D’Hooge J, Kloch-Badelek M et al (2012) Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2012.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hubert A, Le Rolle V, Leclercq C et al (2018) Estimation of myocardial work from pressure–strain loops analysis: an experimental evaluation. Eur Hear J - Cardiovasc Imaging 19:1372–1379

    Article  Google Scholar 

  110. Tadic M, Cuspidi C, Pencic B et al (2020) Myocardial work in hypertensive patients with and without diabetes: an echocardiographic study. J Clin Hypertens 22:2121–2127

    Article  Google Scholar 

  111. Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515

    Article  CAS  PubMed  Google Scholar 

  112. Cauwenberghs N, Tabassian M, Thijs L et al (2019) Area of the pressure-strain loop during ejection as non-invasive index of left ventricular performance: a population study. Cardiovasc Ultrasound 17:15

    Article  PubMed  PubMed Central  Google Scholar 

  113. Russell K, Eriksen M, Aaberge L et al (2012) A novel clinical method for quantification of regional left ventricular pressure–strain loop area: a non-invasive index of myocardial work. Eur Heart J 33:724–733

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mor-Avi V, Jenkins C, Kühl HP et al (2008) Real-time 3-dimensional echocardiographic quantification of left ventricular volumes. JACC Cardiovasc Imaging 1:413–423

    Article  PubMed  Google Scholar 

  115. Nissen L, Winther S, Schmidt M et al (2020) Implementation of coronary computed tomography angiography as nationally recommended first-line test in patients with suspected chronic coronary syndrome: impact on the use of invasive coronary angiography and revascularization. Eur Hear J - Cardiovasc Imaging 21:1353–1362

    Article  Google Scholar 

  116. Al-Mallah MH, Qureshi W, Lin FY et al (2014) Does coronary CT angiography improve risk stratification over coronary calcium scoring in symptomatic patients with suspected coronary artery disease? Results from the prospective multicenter international CONFIRM registry. Eur Hear J - Cardiovasc Imaging 15:267–274

    Article  Google Scholar 

  117. Codella NCF, Lee HY, Fieno DS et al (2012) Improved left ventricular mass quantification with partial voxel interpolation in vivo and necropsy validation of a novel cardiac MRI segmentation algorithm. Circ Cardiovasc Imaging 5:137–146

    Article  PubMed  Google Scholar 

  118. Perrone-Filardi P, Coca A, Galderisi M et al (2017) Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients: a consensus paper from the European Association of Cardiovascular Imaging (EACVI), the European Society of Cardiology Council on Hypertension, and. Eur Heart J Cardiovasc Imaging 18:945–960

    Article  PubMed  Google Scholar 

  119. Ambale-Venkatesh B, Armstrong AC, Liu CY et al (2014) Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging 15:442–449

    Article  PubMed  Google Scholar 

  120. Mahrholdt H, Wagner A, Judd RM et al (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  121. López B, Ravassa S, Moreno MU et al (2021) Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-00504-1

    Article  PubMed  Google Scholar 

  122. Hashimura H, Kimura F, Ishibashi-Ueda H et al (2017) Radiologic-pathologic correlation of primary and secondary cardiomyopathies: MR imaging and histopathologic findings in hearts from autopsy and transplantation. Radiographics 37:719–736

    Article  PubMed  Google Scholar 

  123. Haaf P, Garg P, Messroghli DR et al (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson 18. https://doi.org/10.1186/s12968-016-0308-4

  124. Ladeiras-Lopes R, Moreira HT, Bettencourt N et al (2018) Metabolic syndrome is associated with impaired diastolic function independently of MRI-derived myocardial extracellular volume: the MESA study. Diabetes 67:1007–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. MacEira AM, Mohiaddin RH (2012) Cardiovascular magnetic resonance in systemic hypertension. J Cardiovasc Magn Reson 14. https://doi.org/10.1186/1532-429X-14-28

  126. Sipola P, Magga J, Husso M et al (2011) Cardiac MRI assessed left ventricular hypertrophy in differentiating hypertensive heart disease from hypertrophic cardiomyopathy attributable to a sarcomeric gene mutation. Eur Radiol 21:1383–1389

    Article  PubMed  Google Scholar 

  127. Rodrigues JCL, Rohan S, Ghosh Dastidar A et al (2017) Hypertensive heart disease versus hypertrophic cardiomyopathy: multi-parametric cardiovascular magnetic resonance discriminators when end-diastolic wall thickness ≥ 15 mm. Eur Radiol 27:1125–1135

    Article  PubMed  Google Scholar 

  128. Peterson LR, Gropler RJ (2010) Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.109.860593

    Article  PubMed  Google Scholar 

  129. Peterson LR, Gropler RJ (2020) Metabolic and molecular imaging of the diabetic cardiomyopathy. Circ Res 1628–45.

  130. Matsunari I, Aoki H, Nomura Y et al (2010) Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3:595–603

    Article  PubMed  Google Scholar 

  131. Tentolouris N, Liatis S, Katsilambros N (2006) Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci 1083:129–152

    Article  CAS  PubMed  Google Scholar 

  132. Egan BM (2003) Insulin resistance and the sympathetic nervous system. Curr Hypertens Rep 5:247–254

    Article  PubMed  Google Scholar 

  133. Pellegrino T, Piscopo V, Boemio A et al (2015) Impact of obesity and acquisition protocol on (123)I-metaiodobenzylguanidine indexes of cardiac sympathetic innervation. Quant Imaging Med Surg 5:822–828

    PubMed  PubMed Central  Google Scholar 

  134. Allman KC, Stevens MJ, Wieland DM et al (1993) Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 22:1425–1432

    Article  CAS  PubMed  Google Scholar 

  135. Hattori N, Tamaki N, Hayashi T et al (1996) Regional abnormality of iodine-123-MIBG in diabetic hearts. J Nucl Med 37:1985–1990

    CAS  PubMed  Google Scholar 

  136. Nagamachi S, Fujita S, Nishii R et al (2006) Prognostic value of cardiac I-123 metaiodobenzylguanidine imaging in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol 13:34–42

    Article  PubMed  Google Scholar 

  137. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397

    Article  PubMed  Google Scholar 

  138. Beadle R, Frenneaux M (2010) Magnetic resonance spectroscopy in myocardial disease. Expert Rev Cardiovasc Ther 8:269–277

    Article  PubMed  Google Scholar 

  139. Levelt E, Rodgers CT, Clarke WT et al (2016) Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. Eur Heart J 37:3461–3469

    Article  PubMed  Google Scholar 

  140. Antonopoulos AS, Antoniades C (2018) Cardiac magnetic resonance imaging of epicardial and intramyocardial adiposity as an early sign of myocardial disease. Circ Cardiovasc Imaging 11:e008083.

  141. Gillinder L, Goo SY, Cowin G et al (2015) Quantification of intramyocardial metabolites by proton magnetic resonance spectroscopy. Front Cardiovasc Med 2. https://doi.org/10.3389/fcvm.2015.00024

  142. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  PubMed  Google Scholar 

  143. Dey D, Suzuki Y, Suzuki S et al (2008) Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol 43:145–153

    Article  PubMed  Google Scholar 

  144. Ruberg FL, Chen Z, Hua N et al (2010) The relationship of ectopic lipid accumulation to cardiac and vascular function in obesity and metabolic syndrome. Obesity 18:1116–1121

    Article  CAS  PubMed  Google Scholar 

  145. Rider OJ, Apps A, Miller JJJJ et al (2020) Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI. Circ Res 725–36.

  146. Lewis AJM, Miller JJ, Lau AZ et al (2018) Noninvasive immunometabolic cardiac inflammation imaging using hyperpolarized magnetic resonance. Circ Res 122:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang ZJ, Ohliger MA, Larson PEZ et al (2019) Hyperpolarized 13C MRI: state of the art and future directions. Radiology 291:273–284

    Article  PubMed  Google Scholar 

  148. Mathew RC, Bourque JM, Salerno M et al (2020) Cardiovascular imaging techniques to assess microvascular dysfunction. JACC Cardiovasc Imaging 13:1577–1590

    Article  PubMed  Google Scholar 

  149. Radico F, Cicchitti V, Zimarino M et al (2014) Angina pectoris and myocardial ischemia in the absence of obstructive coronary artery disease: practical considerations for diagnostic tests. JACC Cardiovasc Interv 7:453–463

    Article  PubMed  Google Scholar 

  150. Mejía-Rentería H, van der Hoeven N, van de Hoef TP et al (2017) Targeting the dominant mechanism of coronary microvascular dysfunction with intracoronary physiology tests. Int J Cardiovasc Imaging 33:1041–1059

    Article  PubMed  Google Scholar 

  151. Masi S, Rizzoni D, Taddei S et al (2020) Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur Heart J. https://doi.org/10.1093/eurheartj/ehaa857

    Article  PubMed Central  Google Scholar 

  152. Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559

    Article  PubMed  Google Scholar 

  153. Cortigiani L, Rigo F, Gherardi S et al (2007) Additional prognostic value of coronary flow reserve in diabetic and nondiabetic patients with negative dipyridamole stress echocardiography by wall motion criteria. J Am Coll Cardiol 50:1354–1361

    Article  PubMed  Google Scholar 

  154. Lee JM, Jung JH, Hwang D et al (2016) Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol 67:1158–1169

    Article  PubMed  Google Scholar 

  155. Beltrame JF, Crea F, Kaski JC et al (2017) International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. https://doi.org/10.1093/eurheartj/ehv351

    Article  PubMed  Google Scholar 

  156. Caiati C, Montaldo C, Zedda N et al (1999) Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J Am Coll Cardiol 34:1193–1200

    Article  CAS  PubMed  Google Scholar 

  157. Vogel R, Indermühle A, Reinhardt J et al (2005) The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol 45:754–762

    Article  PubMed  Google Scholar 

  158. Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477

    Article  PubMed  Google Scholar 

  159. Fearon WF, Low AF, Yong AS et al (2013) Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation 127:2436–2441

    Article  PubMed  PubMed Central  Google Scholar 

  160. McGeoch R, Watkins S, Berry C et al (2010) The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 3:715–722

    Article  PubMed  Google Scholar 

  161. Branch KR, Haley RD, Bittencourt MS et al (2017) Myocardial computed tomography perfusion. Cardiovasc Diagn Ther 7:452–462

    Article  PubMed  PubMed Central  Google Scholar 

  162. Camici PG, D’Amati G, Rimoldi O (2015) Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 12:48–62

    Article  PubMed  Google Scholar 

  163. Nørgaard BL, Leipsic J, Gaur S et al (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63:1145–1155

    Article  PubMed  Google Scholar 

  164. Di Carli MF, Charytan D, McMahon GT et al (2011) Coronary circulatory function in patients with the metabolic syndrome. J Nucl Med 52:1369–1377

    Article  PubMed  CAS  Google Scholar 

  165. Yokoyama I, Momomura SI, Ohtake T et al (1997) Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 30:1472–1477

    Article  CAS  PubMed  Google Scholar 

  166. Taqueti VR, Solomon SD, Shah AM et al (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39:840–849

    Article  CAS  PubMed  Google Scholar 

  167. Taqueti VR, Di Carli MF (2018) Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol 72:2625–2641

    Article  PubMed  PubMed Central  Google Scholar 

  168. Schindler TH, Schelbert HR, Quercioli A et al (2010) Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 3:623–640

    Article  PubMed  Google Scholar 

  169. Engblom H, Xue H, Akil S et al (2017) Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-017-0388-9

    Article  PubMed  PubMed Central  Google Scholar 

  170. Jerosch-Herold M (2010) Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12. https://doi.org/10.1186/1532-429X-12-57

  171. Patel AR, Antkowiak PF, Nandalur KR et al (2010) Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis. J Am Coll Cardiol 56:561–569

    Article  PubMed  PubMed Central  Google Scholar 

  172. Thomson LEJ, Wei J, Agarwal M et al (2015) Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction: a national heart, lung, and blood institute-sponsored study from the women’s ischemia syndrome evaluation. Circ Cardiovasc Imaging 8. https://doi.org/10.1161/CIRCIMAGING.114.002481

  173. Shaw JL, Nelson MD, Wei J et al (2018) Inverse association of MRI-derived native myocardial T1 and perfusion reserve index in women with evidence of ischemia and no obstructive CAD: a pilot study. Int J Cardiol 270:48–53

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gutiérrez E, Flammer AJ, Lerman LO et al (2013) Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 34. https://doi.org/10.1093/eurheartj/eht351

  175. Elgendy IY, Pepine CJ (2019) Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am J Med 132:692–697

    Article  PubMed  PubMed Central  Google Scholar 

  176. Bottini PB, Carr AA, Prisant LM et al (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  CAS  PubMed  Google Scholar 

  177. Karamitsos TD, Arvanitaki A, Karvounis H et al (2020) Myocardial tissue characterization and fibrosis by imaging. JACC Cardiovasc Imaging 13:1221–1234

    Article  PubMed  Google Scholar 

  178. Ford TJ, Stanley B, Good R et al (2018) Stratified medical therapy using invasive coronary function testing in angina: the CorMicA trial. J Am Coll Cardiol 72:2841–2855

    Article  PubMed  Google Scholar 

  179. Hyafil F, Rouzet F, Le Guludec D (2018) Quantification of myocardial blood flow with dynamic SPECT acquisitions: ready for prime time? Eur J Nucl Med Mol Imaging 45:2170–2172

    Article  PubMed  Google Scholar 

  180. Brown LAE, Onciul SC, Broadbent DA et al (2018) Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson 20. https://doi.org/10.1186/s12968-018-0462-y

  181. Liu A, Wijesurendra RS, Liu JM et al (2018) Diagnosis of microvascular angina using cardiac magnetic resonance. J Am Coll Cardiol 71:969–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mathew RC, Kramer CM (2018) Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med (United Kingdom) 23:143–152

    Article  Google Scholar 

  183. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  184. Cowie MR, Fisher M (2020) SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17:761–772

    Article  CAS  PubMed  Google Scholar 

  185. Saraiva FK, Sposito AC (2014) Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol 13:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Tan Y, Zhang Z, Zheng C et al (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17:585–607

    Article  PubMed  PubMed Central  Google Scholar 

  187. Investigators S-H (2018) Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med 379:924–933

    Article  Google Scholar 

Download references

Funding

This work has been supported by a grant from the Rete Cardiologica of the Italian Ministry of Health to FM.

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived, drafted, and revised the article.

Corresponding author

Correspondence to Fabrizio Montecucco.

Ethics declarations

Conflict of interest

LL is coinventor on the International Patent (WO/2020/226993) filed in April 2020 and relating to the use of antibodies which specifically bind IL-1α to reduce various sequelae of ischemia–reperfusion injury to the central nervous system. The other authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preda, A., Liberale, L. & Montecucco, F. Imaging techniques for the assessment of adverse cardiac remodeling in metabolic syndrome. Heart Fail Rev 27, 1883–1897 (2022). https://doi.org/10.1007/s10741-021-10195-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10195-6

Keywords

Navigation