Skip to main content
Log in

The utility of positron emission tomography in cardiac amyloidosis

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiac amyloidosis, characterized by progressive restrictive cardiomyopathy, presents unusual diagnostic challenges. Conventional cardiac scintigraphy has shown limited utility in the quantification of disease burden and serial follow-up of cardiac amyloidosis. The advent of specialized positron emission tomography with specific amyloid-binding radiotracers has the potential to change currently employed diagnostic algorithms for the imaging of cardiac amyloidosis. This review aims to discuss the diagnostic utility of amyloid-binding radiotracers, including Pittsburg compound B, florbetapir, florbetapan, and sodium fluoride. These tracers have promising potential for the early detection of the particular type of cardiac amyloidosis, pursuing relevant medical intervention, assessing amyloid burden, monitoring treatment response, and overall prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349(6):583–596

    Article  CAS  PubMed  Google Scholar 

  2. Phelan D et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98(19):1442–1448

    Article  PubMed  Google Scholar 

  3. Syed IS et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3(2):155–164

    Article  PubMed  Google Scholar 

  4. Kristen AV, Dengler TJ, Katus HA (2007) Suspected cardiac amyloidosis: endomyocardial biopsy remains the diagnostic gold-standard. Am J Hematol 82(4):328

    Article  PubMed  Google Scholar 

  5. Falk RH, Quarta CC, Dorbala S (2014) How to image cardiac amyloidosis. Circ Cardiovasc Imaging 7(3):552–562

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee SP et al (2020) Pittsburgh B compound positron emission tomography in patients with AL cardiac amyloidosis. J Am Coll Cardiol 75(4):380–390

    Article  CAS  PubMed  Google Scholar 

  7. Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet 387(10038):2641–2654

    Article  CAS  PubMed  Google Scholar 

  8. Alexander KM, Singh A, Falk RH (2017) Novel pharmacotherapies for cardiac amyloidosis. Pharmacol Ther 180:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perugini E et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46(6):1076–1084

    Article  PubMed  Google Scholar 

  10. Ruberg FL et al (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73(22):2872–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Castaño A, Bokhari S, Maurer MS (2015) Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur Heart J 36(38):2595–2597

    Article  PubMed  CAS  Google Scholar 

  12. Gillmore JD et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412

    Article  CAS  PubMed  Google Scholar 

  13. Dorbala S et al (2019) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2—evidence base and standardized methods of imaging. J Nucl Cardiol 26(6):2065–2123

    Article  PubMed  Google Scholar 

  14. Rosengren S et al (2020) Diagnostic accuracy of [11C]PIB positron emission tomography for detection of cardiac amyloidosis. JACC Cardiovasc Imaging 13(6):1337–1347

    Article  PubMed  Google Scholar 

  15. Cuddy SAM et al (2020) Improved quantification of cardiac amyloid burden in systemic light chain amyloidosis: redefining early disease? JACC Cardiovasc Imaging 13(6):1325–1336

    Article  PubMed  PubMed Central  Google Scholar 

  16. Castaño A et al (2016) Serial scanning with technetium pyrophosphate (99mTc-PYP) in advanced ATTR cardiac amyloidosis. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 23(6):1355–1363

    Article  Google Scholar 

  17. Klunk WE et al (2004) Imaging brain amyloid in Alzheimers disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319

    Article  CAS  PubMed  Google Scholar 

  18. Antoni G et al (2013) In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 54(2):213–220

    Article  CAS  PubMed  Google Scholar 

  19. Ezawa N et al (2018) Visualization of multiple organ amyloid involvement in systemic amyloidosis using (11)C-PiB PET imaging. Eur J Nucl Med Mol Imaging 45(3):452–461

    Article  PubMed  Google Scholar 

  20. Lee SP et al (2015) 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 8(1):50–59

    Article  PubMed  Google Scholar 

  21. Kristen AV et al (2016) Cardiac amyloid load: a prognostic and predictive biomarker in patients with light-chain amyloidosis. J Am Coll Cardiol 68(1):13–24

    Article  CAS  PubMed  Google Scholar 

  22. Pilebro B et al (2018) Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 25(1):240–248

    Article  PubMed  Google Scholar 

  23. Koike H et al (2004) Pathology of early- vs late-onset TTR Met30 familial amyloid polyneuropathy. Neurology 63(1):129–138

    Article  CAS  PubMed  Google Scholar 

  24. Takasone K et al (2020) Non-invasive detection and differentiation of cardiac amyloidosis using (99m)Tc-pyrophosphate scintigraphy and (11)C-Pittsburgh compound B PET imaging. Amyloid 27(4):266–274

    Article  CAS  PubMed  Google Scholar 

  25. Rosengren S et al (2020) Diagnostic accuracy of [(11)C]PIB positron emission tomography for detection of cardiac amyloidosis. JACC Cardiovasc Imaging 13(6):1337–1347

    Article  PubMed  Google Scholar 

  26. Choi SR et al (2012) Correlation of amyloid PET ligand florbetapir F 18 binding with Aβ aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Disord 26(1):8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni R et al (2013) Amyloid tracers detect multiple binding sites in Alzheimer’s disease brain tissue. Brain 136(7):2217–2227

    Article  PubMed  Google Scholar 

  28. Clark CM et al (2012) Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol 11(8):669–678

    Article  CAS  PubMed  Google Scholar 

  29. Park MA et al (2015) 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study. Circ Cardiovasc Imag 8(8)

  30. Dorbala S et al (2014) Imaging cardiac amyloidosis: a pilot study using 18F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41(9):1652-1662

  31. Osborne DR et al (2015) A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front Cardiovasc Med 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  32. Manwani R et al (2018) A pilot study demonstrating cardiac uptake with 18F-florbetapir PET in AL amyloidosis patients with cardiac involvement. Amyloid 25(4):247–252

    Article  CAS  PubMed  Google Scholar 

  33. Baratto L et al (2018) (18)F-Florbetaben whole-body PET/MRI for evaluation of systemic amyloid deposition. EJNMMI Res 8(1):66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Law WP et al (2016) Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med 57(11):1733–1739

    Article  CAS  PubMed  Google Scholar 

  35. Kircher M et al (2019) Detection of cardiac amyloidosis with (18)F-florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging 46(7):1407–1416

    Article  PubMed  Google Scholar 

  36. Seo M et al (2019) Clinical utility of 18F-florbetaben PET for detecting amyloidosis associated with multiple myeloma: a prospective case-control study. Clin Nucl Med 44(9):e503–e509

    Article  PubMed  Google Scholar 

  37. Genovesi D et al (2021) [18F]-Florbetaben PET/CT for differential diagnosis among cardiac immunoglobulin light chain, transthyretin amyloidosis, and mimicking conditions. JACC Cardiovasc Imaging 14(1):246–255

    Article  PubMed  Google Scholar 

  38. Van Der Gucht A et al (2016) [18F]-NaF PET/CT imaging in cardiac amyloidosis. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 23(4):846–849

    Article  Google Scholar 

  39. Gagliardi C et al (2017) Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 24(2):746–749

    Article  Google Scholar 

  40. Morgenstern R et al (2018) 18Fluorine sodium fluoride positron emission tomography, a potential biomarker of transthyretin cardiac amyloidosis. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 25(5):1559–1567

    Article  Google Scholar 

  41. Trivieri MG et al (2016) (18)F-Sodium fluoride PET/MR for the assessment of cardiac amyloidosis. J Am Coll Cardiol 68(24):2712–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abulizi M et al (2019) 18F-Sodium fluoride PET/MRI myocardial imaging in patients with suspected cardiac amyloidosis. J Nuc Cardiol: Official Pub Am Soc Nuclear Cardiol

  43. Martineau P et al (2021) Examining the sensitivity of 18F-NaF PET for the imaging of cardiac amyloidosis. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology 28(1):209–218

    Article  Google Scholar 

  44. Masri A et al (2020) Molecular imaging of cardiac amyloidosis. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine 61(7):965–970

    Article  CAS  Google Scholar 

  45. Kim SH, Kim YS, Kim S-J (2020) Diagnostic performance of PET for detection of cardiac amyloidosis: a systematic review and meta-analysis. J Cardiol 76(6):618–625

    Article  PubMed  Google Scholar 

  46. Gutterman DD et al (2016) The human microcirculation: regulation of flow and beyond. Circ Res 118(1):157–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bravo PE, Di Carli MF, Dorbala S (2017) Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22(4):455–464

    Article  PubMed  PubMed Central  Google Scholar 

  48. Camici PG, d’Amati G, Rimoldi O (2015) Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 12(1):48–62

    Article  PubMed  Google Scholar 

  49. Tsai SB et al (2011) Myocardial infarction with “clean coronaries” caused by amyloid light-chain AL amyloidosis: a case report and literature review. Amyloid: The Int J Exp Clinical Investigation: The Official J Int Soc Amyloidosis 18(3):160–164

  50. Al Suwaidi J et al (1999) Systemic amyloidosis presenting with angina pectoris. Ann Intern Med 131(11):838–841

    Article  CAS  PubMed  Google Scholar 

  51. Ogawa H et al (2001) Cardiac amyloidosis presenting as microvascular angina–a case report. Angiology 52(4):273–278

    Article  CAS  PubMed  Google Scholar 

  52. Smith RR, Hutchins GM (1979) Ischemic heart disease secondary to amyloidosis of intramyocardial arteries. Am J Cardiol 44(3):413–417

    Article  CAS  PubMed  Google Scholar 

  53. Hongo M et al (2000) Comparison of electrocardiographic findings in patients with AL (primary) amyloidosis and in familial amyloid polyneuropathy and anginal pain and their relation to histopathologic findings. Am J Cardiol 85(7):849–853

    Article  CAS  PubMed  Google Scholar 

  54. Modesto KM et al (2007) Vascular abnormalities in primary amyloidosis. Eur Heart J 28(8):1019–1024

    Article  PubMed  Google Scholar 

  55. Buja LM, Khoi NB, Roberts WC (1970) Clinically significant cardiac amyloidosis. Clinicopathologic findings in 15 patients. The Am J Cardiol 26(4):94–405

  56. Dorbala S et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart failure 2(4):358–367

    Article  PubMed  PubMed Central  Google Scholar 

  57. Takasone K et al (2020) Non-invasive detection and differentiation of cardiac amyloidosis using 99mTc-pyrophosphate scintigraphy and 11C-Pittsburgh compound B PET imaging. Amyloid 27(4):266–274

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouaz H. Al-Mallah.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional declarations for articles in life science journals that report the results of studies involving humans and/or animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 129 KB)

Supplementary file2 (PDF 128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, S., Saad, J.M., Ahmed, A.I. et al. The utility of positron emission tomography in cardiac amyloidosis. Heart Fail Rev 27, 1531–1541 (2022). https://doi.org/10.1007/s10741-021-10183-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10183-w

Keywords

Navigation