Abstract
There has been a progressive evolution in the management of patients with chronic heart failure and reduced ejection fraction (HFrEF), including cardiac resynchronisation therapy (CRT) in those that fulfil pre-defined criteria. However, there exists a significant proportion with refractory symptoms in whom CRT devices are not clinically indicated or ineffective. Cardiac contractility modulation (CCM) is a novel therapy that incorporates administration of non-excitatory electrical impulses to the interventricular septum during the absolute refractory period. Implantation is analogous to a traditional transvenous pacemaker system, but with the use of two right ventricular leads. Mechanistic studies have shown augmentation of left ventricular contractility and beneficial global effects on reverse remodeling, primarily through alterations in calcium handling. This appears to occur without increasing myocardial oxygen consumption. Data from clinical trials have shown translational improvements in functional capacity and quality of life, though long-term outcome data are lacking. This review explores the rationale, evidence base and limitations of this nascent technology.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Availability of data and material
All relevant data and material are included within the review.
References
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire D, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 131(4):e29–e322
Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200
McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004
McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008
Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G, McNulty S, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luceri RM, Ip JH, Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352(3):225–237
Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA 3rd, Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W, MADIT-CRT Trial Investigators (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361(14):1329–1338
Shenkman HJ, Pampati V, Khandelwal AK, McKinnon J, Nori D, Kaatz S, Sandberg KR, McCullough PA (2002) Congestive heart failure and QRS duration: establishing prognosis study. Chest. 122(2):528–534
Shah RM, Patel D, Molnar J, Ellenbogen KA, Koneru JN (2015) Cardiac-resynchronization therapy in patients with systolic heart failure and QRS interval </=130 ms: insights from a meta-analysis. Europace 17(2):267–273
Daubert C, Behar N, Martins RP, Mabo P, Leclercq C (2017) Avoiding non-responders to cardiac resynchronization therapy: a practical guide. Eur Heart J 38(19):1463–1472
Bers DM (2002) Cardiac excitation-contraction coupling. Nature. 415(6868):198–205
Lompre AM, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR (2010) Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 121(6):822–830
Fiedler B, Wollert KC (2004) Interference of antihypertrophic molecules and signaling pathways with the Ca2 + -calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res 63(3):450–457
Wood EH, Heppner RL, Weidmann S (1969) Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24(3):409–445
Terrar DA, White E (1989) Mechanism of potentiation of contraction by depolarization during action potentials in guinea-pig ventricular muscle. Q J Exp Physiol 74(3):355–358
Weber CR, Piacentino V 3rd, Houser SR, Bers DM (2003) Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation. 108(18):2224–2229
Burkhoff D, Shemer I, Felzen B, Shimizu J, Mika Y, Dickstein M et al (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6(1):27–34
Winter J, Brack KE, Ng GA (2011) Cardiac contractility modulation in the treatment of heart failure: initial results and unanswered questions. Eur J Heart Fail 13(7):700–710
Mohri S, Shimizu J, Mika Y, Shemer I, Wang J, Ben-Haim S, Burkhoff D (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol 284(4):H1119–H1123
Cannell MB, Kong CH (2012) Local control in cardiac E-C coupling. J Mol Cell Cardiol 52(2):298–303
Eisner D, Bode E, Venetucci L, Trafford A (2013) Calcium flux balance in the heart. J Mol Cell Cardiol 58:110–117
Lyon AR, Bannister ML, Collins T, Pearce E, Sepehripour AH, Dubb SS, Garcia E, O'Gara P, Liang L, Kohlbrenner E, Hajjar RJ, Peters NS, Poole-Wilson PA, Macleod KT, Harding SE (2011) SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol 4(3):362–372
Lyon AR, Samara MA, Feldman DS (2013) Cardiac contractility modulation therapy in advanced systolic heart failure. Nat Rev Cardiol 10(10):584–598
Winter J, Brack KE, Ng GA (2011) The acute inotropic effects of cardiac contractility modulation (CCM) are associated with action potential duration shortening and mediated by β1-adrenoceptor signalling. J Mol Cell Cardiol 51(2):252–262
Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93(10):896–906
Brunckhorst CB, Shemer I, Mika Y, Ben-Haim SA, Burkhoff D (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail 8(1):7–15
Imai M, Rastogi S, Gupta RC, Mishra S, Sharov VG, Stanley WC, Mika Y, Rousso B, Burkhoff D, Ben-Haim S, Sabbah HN (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49(21):2120–2128
Morita H, Suzuki G, Haddad W, Mika Y, Tanhehco EJ, Sharov VG, Goldstein S, Ben-Haim S, Sabbah HN (2003) Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Fail 9(1):69–75
Rastogi S, Mishra S, Zaca V, Mika Y, Rousso B, Sabbah HN (2008) Effects of chronic therapy with cardiac contractility modulation electrical signals on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiology. 110(4):230–237
Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142
Kirkfeldt RE, Johansen JB, Nohr EA, Moller M, Arnsbo P, Nielsen JC (2011) Risk factors for lead complications in cardiac pacing: a population-based cohort study of 28,860 Danish patients. Heart Rhythm 8(10):1622–1628
Wiegn P, Chan R, Jost C, Saville BR, Parise H, Prutchi D, Carson PE, Stagg A, Goldsmith RL, Burkhoff D (2020) Safety, performance, and efficacy of cardiac contractility modulation delivered by the 2-lead optimizer smart system: the FIX-HF-5C2 study. Circ Heart Fail 13(4):e006512
Lawo T, Borggrefe M, Butter C, Hindricks G, Schmidinger H, Mika Y, Burkhoff D, Pappone C, Sabbah HN (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 46(12):2229–2236
Al-Ghamdi B, Shafquat A, Mallawi Y (2017) Cardiac contractility modulation therapy: are there super responders? HeartRhythm Case Rep 3(4):229–232
Kuschyk J, Kloppe A, Schmidt-Schweda S, Bonnemeier H, Rousso B, Roger S (2017) Cardiac contractility modulation: a technical guide for device implantation. Rev Cardiovasc Med 18(1):1–13
Kloppe A, Mijic D, Schiedat F, Bogossian H, Mugge A, Rousso B et al (2016) A randomized comparison of 5 versus 12 hours per day of cardiac contractility modulation treatment for heart failure patients: a preliminary report. Cardiol J 23(1):114–119
Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427
Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Bocker D et al (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25(8):650–655
Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B, Misier AR, Curnis A, Bocker D, Remppis A, Kautzner J, Stuhlinger M, Leclerq C, Taborsky M, Frigerio M, Parides M, Burkhoff D, Hindricks G (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028
Kadish A, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N et al (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161(2):329–37.e1-2
Abraham WT, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Kadish A, FIX-HF-5 Investigators and Coordinators (2011) Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 17(9):710–717
Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld J, Reddy VY, Carson PE, Mann DL, Saville B, Parise H, Chan R, Wiegn P, Hastings JL, Kaplan AJ, Edelmann F, Luthje L, Kahwash R, Tomassoni GF, Gutterman DD, Stagg A, Burkhoff D, Hasenfuß G (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail 6(10):874–883
Giallauria F, Vigorito C, Piepoli MF, Stewart Coats AJ (2014) Effects of cardiac contractility modulation by non-excitatory electrical stimulation on exercise capacity and quality of life: an individual patient's data meta-analysis of randomized controlled trials. Int J Cardiol 175(2):352–357
Schau T, Seifert M, Meyhofer J, Neuss M, Butter C (2011) Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace 13(10):1436–1444
Liu M, Fang F, Luo XX, Shlomo BH, Burkhoff D, Chan JY et al (2016) Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case-control study. Int J Cardiol 206:122–126
Kloppe A, Lawo T, Mijic D, Schiedat F, Muegge A, Lemke B (2016) Long-term survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol 209:291–295
Anker SD, Borggrefe M, Neuser H, Ohlow MA, Roger S, Goette A et al (2019) Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail 21:1103–1113
Kuschyk J, Roeger S, Schneider R, Streitner F, Stach K, Rudic B, Weiß C, Schimpf R, Papavasilliu T, Rousso B, Burkhoff D, Borggrefe M (2015) Efficacy and survival in patients with cardiac contractility modulation: long-term single center experience in 81 patients. Int J Cardiol 183:76–81
Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB et al (2013) Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J 34(19):1404–1413
Kwong JS, Sanderson JE, Yu CM (2012) Cardiac contractility modulation for heart failure: a meta-analysis of randomized controlled trials. Pacing Clin Electrophysiol 35(9):1111–1118
Butter C, Meyhofer J, Seifert M, Neuss M, Minden HH (2007) First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: clinical and technical aspects of combined therapies. Eur J Heart Fail 9(9):955–958
Kuschyk J, Stach K, Tulumen E, Rudic B, Liebe V, Schimpf R et al (2015) Subcutaneous implantable cardioverter-defibrillator: first single-center experience with other cardiac implantable electronic devices. Heart Rhythm 12(11):2230–2238
Roger S, Said S, Kloppe A, Lawo T, Emig U, Rousso B et al (2017) Cardiac contractility modulation in heart failure patients: Randomized comparison of signal delivery through one vs. two ventricular leads. J Cardiol 69(1):326–332
Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230
Kuschyk J, Nagele H, Heinz-Kuck K, Butter C, Lawo T, Wietholt D et al (2019) Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). Int J Cardiol 277:173–177
Roger S, Michels J, Heggemann F, Stach K, Rousso B, Borggrefe M et al (2014) Long term impact of cardiac contractility modulation on QRS duration. J Electrocardiol 47(6):936–940
Rohde LE, Bertoldi EG, Goldraich L, Polanczyk CA (2013) Cost-effectiveness of heart failure therapies. Nat Rev Cardiol 10(6):338–354
Witte K, Hasenfuss G, Kloppe A, Burkhoff D, Green M, Moss J, Peel A, Mealing S, Durand Zaleski I, Cowie MR (2019) Cost-effectiveness of a cardiac contractility modulation device in heart failure with normal QRS duration. ESC Heart Fail 6(6):1178–1187
Author information
Authors and Affiliations
Contributions
PAP was involved in conception and wrote the manuscript as first author. RN, NA and JG were co-authors and assisted in literature search and editing. KKW provided critical review and acted as senior author. All authors have read and approved the final submission.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Ethical standards
The manuscript does not contain clinical studies or patient data.
Ethics approval
Not applicable.
Consent for publication
Not applicable.
Consent to participate
Not applicable.
Code availability
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Patel, P.A., Nadarajah, R., Ali, N. et al. Cardiac contractility modulation for the treatment of heart failure with reduced ejection fraction. Heart Fail Rev 26, 217–226 (2021). https://doi.org/10.1007/s10741-020-10017-1
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10741-020-10017-1
Keywords
Profiles
- John Gierula View author profile