Abstract
Coronary microvascular dysfunction (CMD) can result from structural and functional abnormalities at the intramural and small coronary vessel level affecting coronary blood flow autoregulation and consequently leading to impaired coronary flow reserve. CMD often co-exists with epicardial coronary artery disease but is also commonly seen in patients with various forms of heart disease, including dilated, hypertrophic, and infiltrative cardiomyopathies. CMD can go unnoticed without any symptoms, or manifest as angina, and/or dyspnea, and contribute to the development of heart failure, and even sudden death especially when co-existing with myocardial fibrosis. However, whether CMD in non-ischemic cardiomyopathy is a cause or an effect of the underlying cardiomyopathic process, or whether it can be potentially modifiable with specific therapies, remains incompletely understood.





Similar content being viewed by others
References
Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K et al (2016) The human microcirculation: regulation of flow and beyond. Circ res 118:157–172
Spoladore R, Fisicaro A, Faccini A, Camici PG (2014) Coronary microvascular dysfunction in primary cardiomyopathies. Heart 100:806–813
Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J med 356:830–840
Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manthey J et al (1983) Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol 51:501–506
Abraham D, Hofbauer R, Schafer R, Blumer R, Paulus P, Miksovsky A et al (2000) Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ res 87:644–647
Mosseri M, Schaper J, Admon D, Hasin Y, Gotsman MS, Sapoznikov D et al (1991) Coronary capillaries in patients with congestive cardiomyopathy or angina pectoris with patent main coronary arteries. Ultrastructural morphometry of endomyocardial biopsy samples. Circulation 84:203–210
Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804
Drzezga AE, Blasini R, Ziegler SI, Bengel FM, Picker W, Schwaiger M (2000) Coronary microvascular reactivity to sympathetic stimulation in patients with idiopathic dilated cardiomyopathy. J Nucl med 41:837–844
Nowak B, Stellbrink C, Schaefer WM, Sinha AM, Breithardt OA, Kaiser HJ et al (2004) Comparison of regional myocardial blood flow and perfusion in dilated cardiomyopathy and left bundle branch block: role of wall thickening. J Nucl med 45:414–418
Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 85:1125–1131
Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M et al (2010) Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy: a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3:482–490
Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR et al (2015) Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 16:900–909
Nikolaidis LA, Doverspike A, Huerbin R, Hentosz T, Shannon RP (2002) Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation 105:2785–2790
Sugioka K, Hozumi T, Takemoto Y, Ujino K, Matsumura Y, Watanabe H et al (2005) Early recovery of impaired coronary flow reserve by carvedilol therapy in patients with idiopathic dilated cardiomyopathy: a serial transthoracic Doppler echocardiographic study. J am Coll Cardiol 45:318–319
Knaapen P, van Campen LM, de Cock CC, Gotte MJ, Visser CA, Lammertsma AA et al (2004) Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation 110:646–651
Dilsizian V, Bonow RO, Epstein SE, Fananapazir L (1993) Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J am Coll Cardiol 22:796–804
Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM et al (2008) Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 294:H986–H993
Tanaka M, Fujiwara H, Onodera T, Wu DJ, Matsuda M, Hamashima Y et al (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139
Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J am Coll Cardiol 8:545–557
Timmer SA, Germans T, Brouwer WP, Lubberink M, van der Velden J, Wilde AA et al (2011) Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. Eur J Heart Fail 13:1283–1289
Bravo PE, Pinheiro A, Higuchi T, Rischpler C, Merrill J, Santaularia-Tomas M et al (2012) PET/CT assessment of symptomatic individuals with obstructive and nonobstructive hypertrophic cardiomyopathy. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 53:407–414
Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM et al (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J am Coll Cardiol 58:839–848
Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425
Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ (2000) Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84:476–482
Krams R, Kofflard MJ, Duncker DJ, Von Birgelen C, Carlier S, Kliffen M et al (1998) Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation 97:230–233
Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J am Coll Cardiol 17:879–886
Sotgia B, Sciagra R, Olivotto I, Casolo G, Rega L, Betti I et al (2008) Spatial relationship between coronary microvascular dysfunction and delayed contrast enhancement in patients with hypertrophic cardiomyopathy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 49:1090–1096
Bravo PE, Zimmerman SL, Luo HC, Pozios I, Rajaram M, Pinheiro A et al (2013) Relationship of delayed enhancement by magnetic resonance to myocardial perfusion by positron emission tomography in hypertrophic cardiomyopathy. Circulation Cardiovascular Imaging 6:210–217
Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J med 349:1027–1035
Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J am Coll Cardiol 47:1043–1048
Marian AJ (2016) Challenges in the diagnosis of Anderson-Fabry disease: a deceptively simple and yet complicated genetic disease. J am Coll Cardiol 68:1051–1053
Linhart A, Elliott PM (2007) The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93:528–535
Tomberli B, Cecchi F, Sciagra R, Berti V, Lisi F, Torricelli F et al (2013) Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail 15:1363–1373
Sheppard MN (2011) The heart in Fabry’s disease. Cardiovasc Pathol 20:8–14
Kovarnik T, Mintz GS, Karetova D, Horak J, Bultas J, Skulec R et al (2008) Intravascular ultrasound assessment of coronary artery involvement in Fabry disease. J Inherit Metab dis 31:753–760
Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A et al (2007) Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J 28:1228–1235
Kalliokoski RJ, Kalliokoski KK, Sundell J, Engblom E, Penttinen M, Kantola I et al (2005) Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab dis 28:563–573
Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R et al (2006) Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 92:357–360
Kalliokoski RJ, Kantola I, Kalliokoski KK, Engblom E, Sundell J, Hannukainen JC et al (2006) The effect of 12-month enzyme replacement therapy on myocardial perfusion in patients with Fabry disease. J Inherit Metab dis 29:112–118
Koskenvuo JW, Hartiala JJ, Nuutila P, Kalliokoski R, Viikari JS, Engblom E et al (2008) Twenty-four-month alpha-galactosidase A replacement therapy in Fabry disease has only minimal effects on symptoms and cardiovascular parameters. J Inherit Metab dis 31:432–441
Falk RH, Alexander KM, Liao R, Dorbala S (2016) AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J am Coll Cardiol 68:1323–1341
Al Suwaidi J, Velianou JL, Gertz MA, Cannon RO 3rd, Higano ST, Holmes DR Jr et al (1999) Systemic amyloidosis presenting with angina pectoris. Ann Intern med 131:838–841
Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2:358–367
Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD (2005) Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J med 118:1287
Modesto KM, Dispenzieri A, Gertz M, Cauduro SA, Khandheria BK, Seward JB et al (2007) Vascular abnormalities in primary amyloidosis. Eur Heart J 28:1019–1024
Migrino RQ, Truran S, Gutterman DD, Franco DA, Bright M, Schlundt B et al (2011) Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 301:H2305–H2312
Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Failure
van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, Blanksma PK, Siebelink HM, Vaalburg WM et al (2000) Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J am Coll Cardiol 35:19–28
Range FT, Paul M, Schafers KP, Acil T, Kies P, Hermann S et al (2009) Myocardial perfusion in nonischemic dilated cardiomyopathy with and without atrial fibrillation. J Nucl med 50:390–396
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict of interest
Paco E. Bravo declares that he has no conflict of interest.
Marcelo Di Carli declares that he has no conflict of interest.
Sharmila Dorbala has received grants from the National Institutes of Health (R01 HL 130563) and the American Heart Association (16 CSA 28880004) and grants from Astellas Pharma.
Funding
This work was supported in part by a grant from the National Institutes of Health (1T32HL094301, Dr. Bravo) and (1R01HL130563, Dr. Dorbala).
Rights and permissions
About this article
Cite this article
Bravo, P.E., Di Carli, M.F. & Dorbala, S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22, 455–464 (2017). https://doi.org/10.1007/s10741-017-9628-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10741-017-9628-1