Skip to main content
Log in

Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Coronary microvascular dysfunction (CMD) can result from structural and functional abnormalities at the intramural and small coronary vessel level affecting coronary blood flow autoregulation and consequently leading to impaired coronary flow reserve. CMD often co-exists with epicardial coronary artery disease but is also commonly seen in patients with various forms of heart disease, including dilated, hypertrophic, and infiltrative cardiomyopathies. CMD can go unnoticed without any symptoms, or manifest as angina, and/or dyspnea, and contribute to the development of heart failure, and even sudden death especially when co-existing with myocardial fibrosis. However, whether CMD in non-ischemic cardiomyopathy is a cause or an effect of the underlying cardiomyopathic process, or whether it can be potentially modifiable with specific therapies, remains incompletely understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K et al (2016) The human microcirculation: regulation of flow and beyond. Circ res 118:157–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spoladore R, Fisicaro A, Faccini A, Camici PG (2014) Coronary microvascular dysfunction in primary cardiomyopathies. Heart 100:806–813

    Article  CAS  PubMed  Google Scholar 

  3. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J med 356:830–840

    Article  CAS  PubMed  Google Scholar 

  4. Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manthey J et al (1983) Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol 51:501–506

    Article  CAS  PubMed  Google Scholar 

  5. Abraham D, Hofbauer R, Schafer R, Blumer R, Paulus P, Miksovsky A et al (2000) Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ res 87:644–647

    Article  CAS  PubMed  Google Scholar 

  6. Mosseri M, Schaper J, Admon D, Hasin Y, Gotsman MS, Sapoznikov D et al (1991) Coronary capillaries in patients with congestive cardiomyopathy or angina pectoris with patent main coronary arteries. Ultrastructural morphometry of endomyocardial biopsy samples. Circulation 84:203–210

    Article  CAS  PubMed  Google Scholar 

  7. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  CAS  PubMed  Google Scholar 

  8. Drzezga AE, Blasini R, Ziegler SI, Bengel FM, Picker W, Schwaiger M (2000) Coronary microvascular reactivity to sympathetic stimulation in patients with idiopathic dilated cardiomyopathy. J Nucl med 41:837–844

    CAS  PubMed  Google Scholar 

  9. Nowak B, Stellbrink C, Schaefer WM, Sinha AM, Breithardt OA, Kaiser HJ et al (2004) Comparison of regional myocardial blood flow and perfusion in dilated cardiomyopathy and left bundle branch block: role of wall thickening. J Nucl med 45:414–418

    PubMed  Google Scholar 

  10. Ono S, Nohara R, Kambara H, Okuda K, Kawai C (1992) Regional myocardial perfusion and glucose metabolism in experimental left bundle branch block. Circulation 85:1125–1131

    Article  CAS  PubMed  Google Scholar 

  11. Masci PG, Marinelli M, Piacenti M, Lorenzoni V, Positano V, Lombardi M et al (2010) Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy: a tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3:482–490

    Article  PubMed  Google Scholar 

  12. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR et al (2015) Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 16:900–909

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nikolaidis LA, Doverspike A, Huerbin R, Hentosz T, Shannon RP (2002) Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation 105:2785–2790

    Article  CAS  PubMed  Google Scholar 

  14. Sugioka K, Hozumi T, Takemoto Y, Ujino K, Matsumura Y, Watanabe H et al (2005) Early recovery of impaired coronary flow reserve by carvedilol therapy in patients with idiopathic dilated cardiomyopathy: a serial transthoracic Doppler echocardiographic study. J am Coll Cardiol 45:318–319

    Article  PubMed  Google Scholar 

  15. Knaapen P, van Campen LM, de Cock CC, Gotte MJ, Visser CA, Lammertsma AA et al (2004) Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation 110:646–651

    Article  PubMed  Google Scholar 

  16. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L (1993) Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy. J am Coll Cardiol 22:796–804

    Article  CAS  PubMed  Google Scholar 

  17. Knaapen P, Germans T, Camici PG, Rimoldi OE, ten Cate FJ, ten Berg JM et al (2008) Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 294:H986–H993

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka M, Fujiwara H, Onodera T, Wu DJ, Matsuda M, Hamashima Y et al (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139

    Article  CAS  PubMed  Google Scholar 

  19. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J am Coll Cardiol 8:545–557

    Article  CAS  PubMed  Google Scholar 

  20. Timmer SA, Germans T, Brouwer WP, Lubberink M, van der Velden J, Wilde AA et al (2011) Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. Eur J Heart Fail 13:1283–1289

    Article  CAS  PubMed  Google Scholar 

  21. Bravo PE, Pinheiro A, Higuchi T, Rischpler C, Merrill J, Santaularia-Tomas M et al (2012) PET/CT assessment of symptomatic individuals with obstructive and nonobstructive hypertrophic cardiomyopathy. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 53:407–414

    Article  Google Scholar 

  22. Olivotto I, Girolami F, Sciagra R, Ackerman MJ, Sotgia B, Bos JM et al (2011) Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J am Coll Cardiol 58:839–848

    Article  PubMed  Google Scholar 

  23. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    Article  PubMed  Google Scholar 

  24. Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ (2000) Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84:476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krams R, Kofflard MJ, Duncker DJ, Von Birgelen C, Carlier S, Kliffen M et al (1998) Decreased coronary flow reserve in hypertrophic cardiomyopathy is related to remodeling of the coronary microcirculation. Circulation 97:230–233

    Article  CAS  PubMed  Google Scholar 

  26. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J am Coll Cardiol 17:879–886

    Article  CAS  PubMed  Google Scholar 

  27. Sotgia B, Sciagra R, Olivotto I, Casolo G, Rega L, Betti I et al (2008) Spatial relationship between coronary microvascular dysfunction and delayed contrast enhancement in patients with hypertrophic cardiomyopathy. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 49:1090–1096

    Article  Google Scholar 

  28. Bravo PE, Zimmerman SL, Luo HC, Pozios I, Rajaram M, Pinheiro A et al (2013) Relationship of delayed enhancement by magnetic resonance to myocardial perfusion by positron emission tomography in hypertrophic cardiomyopathy. Circulation Cardiovascular Imaging 6:210–217

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J med 349:1027–1035

    Article  CAS  PubMed  Google Scholar 

  30. Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F et al (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J am Coll Cardiol 47:1043–1048

    Article  PubMed  Google Scholar 

  31. Marian AJ (2016) Challenges in the diagnosis of Anderson-Fabry disease: a deceptively simple and yet complicated genetic disease. J am Coll Cardiol 68:1051–1053

    Article  PubMed  Google Scholar 

  32. Linhart A, Elliott PM (2007) The heart in Anderson-Fabry disease and other lysosomal storage disorders. Heart 93:528–535

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tomberli B, Cecchi F, Sciagra R, Berti V, Lisi F, Torricelli F et al (2013) Coronary microvascular dysfunction is an early feature of cardiac involvement in patients with Anderson-Fabry disease. Eur J Heart Fail 15:1363–1373

    Article  PubMed  Google Scholar 

  34. Sheppard MN (2011) The heart in Fabry’s disease. Cardiovasc Pathol 20:8–14

    Article  PubMed  Google Scholar 

  35. Kovarnik T, Mintz GS, Karetova D, Horak J, Bultas J, Skulec R et al (2008) Intravascular ultrasound assessment of coronary artery involvement in Fabry disease. J Inherit Metab dis 31:753–760

    Article  CAS  PubMed  Google Scholar 

  36. Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A et al (2007) Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J 28:1228–1235

    Article  PubMed  Google Scholar 

  37. Kalliokoski RJ, Kalliokoski KK, Sundell J, Engblom E, Penttinen M, Kantola I et al (2005) Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab dis 28:563–573

    Article  CAS  PubMed  Google Scholar 

  38. Elliott PM, Kindler H, Shah JS, Sachdev B, Rimoldi OE, Thaman R et al (2006) Coronary microvascular dysfunction in male patients with Anderson-Fabry disease and the effect of treatment with alpha galactosidase A. Heart 92:357–360

    Article  CAS  PubMed  Google Scholar 

  39. Kalliokoski RJ, Kantola I, Kalliokoski KK, Engblom E, Sundell J, Hannukainen JC et al (2006) The effect of 12-month enzyme replacement therapy on myocardial perfusion in patients with Fabry disease. J Inherit Metab dis 29:112–118

    Article  CAS  PubMed  Google Scholar 

  40. Koskenvuo JW, Hartiala JJ, Nuutila P, Kalliokoski R, Viikari JS, Engblom E et al (2008) Twenty-four-month alpha-galactosidase A replacement therapy in Fabry disease has only minimal effects on symptoms and cardiovascular parameters. J Inherit Metab dis 31:432–441

    Article  CAS  PubMed  Google Scholar 

  41. Falk RH, Alexander KM, Liao R, Dorbala S (2016) AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J am Coll Cardiol 68:1323–1341

    Article  PubMed  Google Scholar 

  42. Al Suwaidi J, Velianou JL, Gertz MA, Cannon RO 3rd, Higano ST, Holmes DR Jr et al (1999) Systemic amyloidosis presenting with angina pectoris. Ann Intern med 131:838–841

    Article  PubMed  Google Scholar 

  43. Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail 2:358–367

    Article  PubMed  PubMed Central  Google Scholar 

  44. Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA, Edwards WD (2005) Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J med 118:1287

    Article  PubMed  Google Scholar 

  45. Modesto KM, Dispenzieri A, Gertz M, Cauduro SA, Khandheria BK, Seward JB et al (2007) Vascular abnormalities in primary amyloidosis. Eur Heart J 28:1019–1024

    Article  PubMed  Google Scholar 

  46. Migrino RQ, Truran S, Gutterman DD, Franco DA, Bright M, Schlundt B et al (2011) Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Am J Physiol Heart Circ Physiol 301:H2305–H2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dorbala S, Vangala D, Bruyere J Jr, Quarta C, Kruger J, Padera R et al (2014) Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Failure

  48. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, Blanksma PK, Siebelink HM, Vaalburg WM et al (2000) Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J am Coll Cardiol 35:19–28

    Article  PubMed  Google Scholar 

  49. Range FT, Paul M, Schafers KP, Acil T, Kies P, Hermann S et al (2009) Myocardial perfusion in nonischemic dilated cardiomyopathy with and without atrial fibrillation. J Nucl med 50:390–396

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Dorbala.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Paco E. Bravo declares that he has no conflict of interest.

Marcelo Di Carli declares that he has no conflict of interest.

Sharmila Dorbala has received grants from the National Institutes of Health (R01 HL 130563) and the American Heart Association (16 CSA 28880004) and grants from Astellas Pharma.

Funding

This work was supported in part by a grant from the National Institutes of Health (1T32HL094301, Dr. Bravo) and (1R01HL130563, Dr. Dorbala).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, P.E., Di Carli, M.F. & Dorbala, S. Role of PET to evaluate coronary microvascular dysfunction in non-ischemic cardiomyopathies. Heart Fail Rev 22, 455–464 (2017). https://doi.org/10.1007/s10741-017-9628-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9628-1

Keywords