Skip to main content

Advertisement

Log in

Current views on anthracycline cardiotoxicity

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Anthracyclines are well established and effective anticancer agents used to treat a variety of adult and pediatric cancers. Unfortunately, these drugs are also among the commonest chemotherapeutic agents that have been recognized to cause cardiotoxicity. In the last years, several experimental and clinical investigations provided new information and perspectives on anthracycline-related cardiotoxicity. In particular, molecular mechanisms of cardiotoxicity have been better elucidated, early diagnosis has improved through the use of advanced noninvasive cardiac imaging techniques, and emerging data indicate a genetic predisposition to develop anthracycline-related cardiotoxicity. In this article, we review established and new knowledge about anthracycline cardiotoxicity, with special focus on recent advances in cardiotoxicity diagnosis and genetic profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084

    Article  CAS  PubMed  Google Scholar 

  2. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 58:185–229

    Article  Google Scholar 

  3. Groarke JD, Nohria A (2015) Anthracycline cardiotoxicity. A new paradigm for an old classic. Circulation 131:1946–1949

    Article  PubMed  Google Scholar 

  4. Menna P, Salvatorelli E, Minotti G (2010) Anthracycline degradation in cardiomyocytes: a journey to oxidative survival. Chem Res Toxicol 23:6–10

    Article  CAS  PubMed  Google Scholar 

  5. Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore AM, Mariggiò MA, Mordente A, Gianni L, Minotti G (2006) Defective one or two electron reduction of the anticancer anthracycline epirubicin in human heart: relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281:10990–11001

    Article  CAS  PubMed  Google Scholar 

  6. Salvatorelli E, Menna P, Lusini M, Covino E, Minotti G (2009) Doxorubicinolone formation and efflux: a salvage pathway against epirubicin accumulation in human heart. J Pharmacol Exp Ther 329:175–184

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642

    Article  PubMed  Google Scholar 

  8. Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Zito C, Mercuro G (2015) Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 20:621–631

    Article  CAS  PubMed  Google Scholar 

  9. Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124:642–650

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xi L, Zhua SG, Dasa A, Chena Q, Durranta D, Hobbs DC, Lesnefskya EJ, Kukreja RC (2012) dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 26:274–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299

    Article  CAS  PubMed  Google Scholar 

  12. Pereira GC, Silva AM, Diogo CV, Carvalho FS, Monteiro P, Oliveira PJ (2011) Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr Pharm Des 17:2113–2129

    Article  CAS  PubMed  Google Scholar 

  13. Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207:436–444

    Article  CAS  PubMed  Google Scholar 

  14. Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108:2423–2429

    Article  CAS  PubMed  Google Scholar 

  15. Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121:675–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Ferreira-Martins J, Zheng H, Hosoda T, Rota M, Urbanek K, Kajstura J, Leri A, Rossi F, Anversa P (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292

    Article  PubMed  Google Scholar 

  17. Gabrielson K, Bedja D, Pin S, Tsao A, Gama L, Yuan B, Muratore N (2007) Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Cancer Res 67:1436–1444

    Article  CAS  PubMed  Google Scholar 

  18. Spallarossa P, Altieri P, Pronzato P, Aloi C, Ghigliotti G, Barsotti A, Brunelli C (2010) Sublethal doses of an anti-erbB2 antibody leads to death by apoptosis in cardiomyocytes sensitized by low prosenescent doses of epirubicin: the protective role of dexrazoxane. J Pharmacol Exp Ther 332:87–96

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari R, Ceconi C, Campo G, Cangiano E, Cavazza C, Secchiero P, Tavazzi L (2009) Mechanisms of remodeling. A question of life (stem cell production) and death (myocyte apoptosis). Circ J 73:1973–1982

    Article  CAS  PubMed  Google Scholar 

  20. Minotti G, Salvatorelli E, Menna P (2010) Pharmacological foundations of cardio-oncology. J Pharmacol Exp Ther 334:2–8

    Article  CAS  PubMed  Google Scholar 

  21. Cascales A, Pastor-Quirante F, Sánchez-Vega B, Luengo-Gil G, Corral J, Ortuño-Pacheco G, Vicente V, de la Peña FA (2013) Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist 18:446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62:865–872

    CAS  PubMed  Google Scholar 

  23. Mortensen SA, Olsen HS, Baandrup U (1986) Chronic anthracycline cardiotoxicity: haemodynamic and histopathological manifestations suggesting a restrictive endomyocardial disease. Br Heart J 55:274–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Algranati D, Kassab GS, Lanir Y (2011) Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300:H1090–H1100

    Article  CAS  PubMed  Google Scholar 

  25. Stanton T, Marwick TH (2010) Assessment of subendocardial structure and function. J Am Coll Cardiol Imaging 3:867–875

    Article  Google Scholar 

  26. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, DeCara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhães A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939

    Article  PubMed  Google Scholar 

  28. Mele D (2012) Diagnosis of cardiotoxicity: role of conventional and advanced cardiovascular imaging. J Cardiovasc Echogr 11:60–72

    Google Scholar 

  29. Bountioukos M, Doorduijn JK, Roelandt JR, Vourvouri EC, Bax JJ, Schinkel AF, Kertai MD, Sonneveld P, Poldermans D (2003) Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. Eur J Echocardiogr 4:300–305

    Article  CAS  PubMed  Google Scholar 

  30. Mele D, Rizzo P, Pollina AV, Fiorencis A, Ferrari R (2015) Cancer therapy-induced cardiotoxicity: role of ultrasound deformation imaging as an aid to early diagnosis. Ultrasound Med Biol 41:627–643

    Article  PubMed  Google Scholar 

  31. Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, Griffin BP, Grimm RA, Thomas J, Phelan D, Collier P, Krull KR, Mulrooney DA, Green DM, Hudson MM, Robison LL, Plana JC (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol 65:2511–2522

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680

    Article  PubMed  Google Scholar 

  33. Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 9:e002661

    Article  PubMed  Google Scholar 

  34. Schwartz RG, Jain D, Storozynsky E (2013) Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 20:443–464

    Article  PubMed  Google Scholar 

  35. Jiji RS, Kramer CM, Salerno M (2012) Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol 19:377–388

    Article  PubMed  PubMed Central  Google Scholar 

  36. Carrió I, Estorch M, Berná L, López-Pousa J, Tabernero J, Torres G (1995) Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 36:2044–2049

    PubMed  Google Scholar 

  37. Stevens PL, Lenihan DJ (2015) Cardiotoxicity due to chemotherapy: the role of biomarkers. Curr Cardiol Rep 17:49

    Article  Google Scholar 

  38. Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS (2011) Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 58:1819–1824

    Article  PubMed  Google Scholar 

  39. Missov E, Calzolari C, Davy JM, Leclercq F, Rossi M, Pau B (1997) Cardiac troponin I in patients with hematologic malignancies. Coron Artery Dis 8:537–541

    CAS  PubMed  Google Scholar 

  40. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754

    Article  CAS  PubMed  Google Scholar 

  41. Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H (2003) Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol 82:218–222

    CAS  PubMed  Google Scholar 

  42. Specchia G, Buquicchio C, Pansini N, Di Serio F, Liso V, Pastore D, Greco G, Ciuffreda L, Mestice A, Liso A (2005) Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med 145:212–220

    Article  CAS  PubMed  Google Scholar 

  43. Kilickap S, Barista I, Akgul E, Aytemir K, Aksoyek S, Aksoy S, Celik I, Kes S, Tekuzman G (2005) cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol 16:798–804

    Article  CAS  PubMed  Google Scholar 

  44. Singh D, Thakur A, Tang WH (2015) Utilizing cardiac biomarkers to detect and prevent chemotherapy-induced cardiomyopathy. Curr Heart Fail Rep 12:255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809–816

    Article  CAS  PubMed  Google Scholar 

  46. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, Gosavi S, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2011) Early detection and prediction of cardiotoxicity in chemotherapy treated patients. Am J Cardiol 107:1375–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603

    Article  PubMed  PubMed Central  Google Scholar 

  48. Grenier MA, Lipshultz SE (1998) Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 25:72–85

    CAS  PubMed  Google Scholar 

  49. Lipshultz SE, Alvarez JA, Scully RE (2008) Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94:525–533

    Article  CAS  PubMed  Google Scholar 

  50. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561–578

    Article  CAS  PubMed  Google Scholar 

  51. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988

    Article  CAS  PubMed  Google Scholar 

  52. Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, Cinieri S, Martinelli G, Cipolla CM, Fiorentini C (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36:517–522

    Article  CAS  PubMed  Google Scholar 

  53. Cardinale D, Sandri MT, Martinoni A (2002) Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol 13:710–715

    Article  CAS  PubMed  Google Scholar 

  54. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849

    Article  PubMed  Google Scholar 

  55. Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23:2900–2902

    Article  CAS  PubMed  Google Scholar 

  56. Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102–1111

    Article  CAS  PubMed  Google Scholar 

  57. Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, Schwartz DE, Bacharach SL, Green MV, Rosenberg SA (1981) Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med 94:430–435

    Article  CAS  PubMed  Google Scholar 

  58. Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, Zaret BL (1983) Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J 106:638–643

    Article  CAS  PubMed  Google Scholar 

  59. Lewis AB, Crouse VL, Evans W, Takahashi M, Siegel SE (1981) Recovery of left ventricular function following discontinuation of anthracycline chemotherapy in children. Pediatrics 68:67–72

    CAS  PubMed  Google Scholar 

  60. Moreb JS, Oblon DJ (1992) Outcome of clinical congestive heart failure induced by anthracycline chemotherapy. Cancer 70:2637–2641

    Article  CAS  PubMed  Google Scholar 

  61. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, Schwartz PE, Berger HJ, Setaro J, Surkin L et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118

    Article  CAS  PubMed  Google Scholar 

  62. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220

    Article  CAS  PubMed  Google Scholar 

  63. Stoodley PW, Richards DA, Boyd A, Hui R, Harnett PR, Meikle SR, Byth K, Stuart K, Clarke JL, Thomas L (2013) Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: a comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months. Eur J Cancer 49:3396–3403

    Article  CAS  PubMed  Google Scholar 

  64. Mele D, Malagutti P, Indelli M, Ferrari L, Casadei F, Da Ros L, Pollina A, Fiorencis A, Frassoldati A, Ferrari R (2016) Reversibility of left ventricle longitudinal strain alterations induced by adjuvant therapy in early breast cancer patients. Ultrasound Med Biol 42:125–132

    Article  PubMed  Google Scholar 

  65. Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, Peruzzi M, Frati G, Palazzoni G (2013) Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol 112:1980–1984

    Article  CAS  PubMed  Google Scholar 

  66. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332

    CAS  PubMed  Google Scholar 

  67. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Article  Google Scholar 

  68. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  CAS  PubMed  Google Scholar 

  69. Yeh ETH, Bickford CL (2009) Cardiovascular complications of cancer therapy. Incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247

    Article  CAS  PubMed  Google Scholar 

  70. Van Dalen EC, Michiels EM, Caron HN, Kremer LC (2010) Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 5:CD005006

    PubMed  Google Scholar 

  71. Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F, on behalf of the ESMO Guidelines Working Group (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 23(Suppl 7):vii155–vii166

    Article  PubMed  Google Scholar 

  72. Ruggiero A, Ridola V, Puma N, Molinari F, Coccia P, De Rosa G, Riccardi R (2008) Anthracycline cardiotoxicity in childhood. Pediatr Hematol Oncol 25:261–281

    Article  CAS  PubMed  Google Scholar 

  73. Armenian SH, Sun CL, Shannon T, Mills G, Francisco L, Venkataraman K, Wong FL, Forman SJ, Bhatia S (2011) Incidence and predictors of congestive heart failure following autologous hematopoietic cell transplantation. Blood 118:6023–6029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Valachis A, Nilsson C (2015) Cardiac risk in the treatment of breast cancer: assessment and management. Breast Cancer (Dove Med Press) 7:21–35

    CAS  Google Scholar 

  75. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, Colan SD (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23:2629–2636

    Article  CAS  PubMed  Google Scholar 

  76. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, Orav EJ, Gelber RD, Colan SD (1995) Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 332:1738–1743

    Article  CAS  PubMed  Google Scholar 

  77. Altieri P, Barisione C, Lazzarini E, Garuti A, Bezante GP, Canepa M, Spallarossa P, Tocchetti CG, Bollini S, Brunelli C, Ameri P (2016) Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes. J Am Heart Assoc 8:5

    Google Scholar 

  78. De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106:35–46

    Article  PubMed  Google Scholar 

  79. Salvatorelli E, Menna P, Gianni L, Minotti G (2007) Defective taxane stimulation of epirubicinol formation in the human heart: insight into the cardiac tolerability of epirubicin-taxane chemotherapies. J Pharmacol Exp Ther 320:790–800

    Article  CAS  PubMed  Google Scholar 

  80. Pein F, Sakiroglu O, Dahan M, Lebidois J, Merlet P, Shamsaldin A, Villain E, de Vathaire F, Sidi D, Hartmann O (2004) Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J Cancer 91:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van der Pal HJ, van Dalen EC, van Delden E, van Dijk IW, Kok WE, Geskus RB, Sieswerda E, Oldenburger F, Koning CC, van Leeuwen FE, Caron HN, Kremer LC (2012) High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol 30:1429–1437

    Article  Google Scholar 

  82. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A, Rosenberger A, Vonhof S, Bickeböller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nürnberg P, Pfreundschuh M, Trümper L, Brockmöller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762

    Article  CAS  Google Scholar 

  84. Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, Lautner-Csorba O, Szabolcs J, Masat P, Fekete G, Falus A, Szalai C, Kovacs GT (2012) ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukemia. Cell Biol Int 36:79–86

    Article  CAS  PubMed  Google Scholar 

  85. Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, Mays A, Friedman DL, Ginsberg JP, Hudson MM, Neglia JP, Oeffinger KC, Ritchey AK, Villaluna D, Relling MV, Bhatia S (2012) Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol 30:1415–1421

    Article  CAS  PubMed  Google Scholar 

  86. Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dubé MP, Al-Saloos H, Sandor GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Brown AM, Rogers PC, Phillips MS, Rieder MJ, Carleton BC, Hayden MR (2012) Pharmacogenetic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 30:1422–1428

    Article  PubMed  Google Scholar 

  87. Armenian SH, Ding Y, Mills G, Sun C, Venkataraman K, Wong FL, Neuhausen SL, Senitzer D, Wang S, Forman SJ, Bhatia S (2013) Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br J Haematol 163:205–213

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rajić V, Aplenc R, Debeljak M, Prestor VV, Karas-Kuzelicki N, Mlinaric-Rascan I, Jazbec J (2009) Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma 50:1693–1698

    Article  PubMed  Google Scholar 

  89. Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, Ding Y, Landier W, Blanco JG, Chen L, Quiñones A, Ferguson D, Winick N, Ginsberg JP, Keller F, Neglia JP, Desai S, Sklar CA, Castellino SM, Cherrick I, Dreyer ZE, Hudson MM, Robison LL, Yasui Y, Relling MV, Bhatia S (2014) Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. J Clin Oncol 32:647–653

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vejpongsa P, Massey MR, Acholonu SA, Zhang S, Yeh ET (2013) Topoisomerase 2b expression in peripheral blood predicts susceptibility to anthracycline-induced cardiomyopathy (abstr). Circulation 128:A11619

    Google Scholar 

  91. Lubieniecka JM, Liu J, Heffner D, Graham J, Reid R, Hogge D, Grigliatti TA, Riggs WK (2012) Single-nucleotide polymorphisms in aldo-keto and carbonyl reductase genes are not associated with acute cardiotoxicity after daunorubicin chemotherapy. Cancer Epidemiol Biomark Prev 21:2118–2120

    Article  CAS  Google Scholar 

  92. Higgins AY, O’Halloran TD, Chang JD (2015) Chemotherapy-induced cardiomyopathy. Heart Fail Rev 20:721–730

    Article  CAS  PubMed  Google Scholar 

  93. Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail 9:e002843

    Article  CAS  PubMed  Google Scholar 

  94. Vejpongsa P, Yeh ET (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64:938–945

    Article  CAS  PubMed  Google Scholar 

  95. Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L (2014) Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 14:842

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sysa-Shah P, Tocchetti CG, Gupta M, Rainer PP, Shen X, Kang BH, Belmonte F, Li J, Xu Y, Guo X, Bedja D, Gao WD, Paolocci N, Rath R, Sawyer DB, Naga Prasad SV, Gabrielson K (2016) Bidirectional cross-regulation between ErbB2 and β-adrenergic signalling pathways. Cardiovasc Res 109:358–373

    Article  PubMed  Google Scholar 

  97. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10:598–605

    Article  PubMed  Google Scholar 

  98. Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL (2010) Usefulness of cardiac resynchronization therapy in patients with Adriamycin-induced cardiomyopathy. Am J Cardiol 105:522–526

    Article  CAS  PubMed  Google Scholar 

  99. Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO (2012) Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant 31:805–810

    Article  PubMed  Google Scholar 

  100. Oliveira GH, Dupont M, Naftel D, Myers SL, Yuan Y, Tang WH, Gonzalez-Stawinski G, Young JB, Taylor DO, Starling RC (2014) Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63:240–248

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Mele.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

On behalf of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mele, D., Nardozza, M., Spallarossa, P. et al. Current views on anthracycline cardiotoxicity. Heart Fail Rev 21, 621–634 (2016). https://doi.org/10.1007/s10741-016-9564-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9564-5

Keywords

Profiles

  1. Michele Malagù