Skip to main content

Advertisement

Log in

Thyroid hormones and cardiac remodeling

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Thyroid hormones have many cardioprotective actions expressed mainly through the action of T3 on thyroid receptors α1 and β1. They are procontractile anti-apoptotic, anti-inflammatory, and anti-fibrotic, promote angiogenesis and regeneration, and have beneficial effects on microRNA profiles. They have proven to be anti-remodeling in numerous animal studies, mostly in rodents; a specific action on the border zone has been described. Studies in humans with DIPTA have been in conclusion. Remodeling can be defined as an increase of ≥20 % of the end-diastolic or end-systolic volume, together with a return to the fetal phenotype. An overview of animal and clinical studies is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ et al (2014) Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  2. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  3. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  CAS  PubMed  Google Scholar 

  4. McKay RG, Pfeffer MA, Pasternak RC, Markis JE, Come PC, Nakao S et al (1986) Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation 74:693–702

    Article  CAS  PubMed  Google Scholar 

  5. Galiuto L, Garramone B, Scarà A, Rebuzzi AG, Crea F, La Torre G et al (2008) The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. JACC 51:552–559

    Article  PubMed  Google Scholar 

  6. Tardif JC, O'Meara E, Komajda M, Böhm M, Borer JS, Ford I et al (2011) Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J 32:2507–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Migrino RQ, Young JB, Ellis SG, White HD, Lundergan CF, Miller DP et al (1997) End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The global utilization of streptokinase and t-PA for occluded coronary arteries (GUSTO): I angiographic investigators. Circulation 96:116–121

    Article  CAS  PubMed  Google Scholar 

  8. Funaro S, La Torre G, Madonna M, Galiuto L, Scarà A, Labbadia A et al (2009) Incidence, determinants, and prognostic value of reverse left ventricular remodelling after primary percutaneous coronary intervention: results of the acute myocardial infarction contrast imaging (AMICI) multicenter study. Eur Heart J 30:566–575

    Article  PubMed  Google Scholar 

  9. Topkara VK, Mann DL (2011) Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther 25:171–182

    Article  CAS  PubMed  Google Scholar 

  10. Cokkinos DV (2014) The mechanisms of cell death. In: Cokkinos DV (ed) Introduction of translational cardiovascular research. Springer International Publishing, Switzerland, pp 253–278

    Google Scholar 

  11. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timmers L, Pasterkamp G, de Hoog VC et al (2012) The innate immune response in reperfused myocardium. Cardiovasc Res 94:276–283

    Article  CAS  PubMed  Google Scholar 

  13. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lupher ML Jr, Gallatin WM (2006) Regulation of fibrosis by the immune system. Adv Immunol 89:245–288

    Article  CAS  PubMed  Google Scholar 

  15. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  CAS  PubMed  Google Scholar 

  16. Krenz M, Robbins J (2004) Impact of beta-myosin heavy chain expression on cardiac function during stress. J Am Coll Cardiol 44:2390–2397

    Article  CAS  PubMed  Google Scholar 

  17. Mourouzis I, Dimopoulos A, Saranteas T, Tsinarakis N, Livadarou E, Spanou D, Kokkinos AD, Xinaris C, Pantos C, Cokkinos DV (2009) Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res 58:29–38

    CAS  PubMed  Google Scholar 

  18. Jeddi S, Zaman J, Ghasemi A (2015) Effects of ischemic postconditioning on the hemodynamic parameters and heart nitric oxide levels of hypothyroid rats. Arq Bras Cardiol 104:136–143

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    Article  CAS  PubMed  Google Scholar 

  20. Danzi S, Klein S, Klein I (2008) Differential regulation of the myosin heavy chain genes alpha and beta in rat atria and ventricles: role of antisense RNA. Thyroid 18:761–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haghighi K, Sanoudou D, Kranias EG (2014) Calcium cycling circuits in cardiac physiology and pathophysiology. In: Cokkinos DV (ed) introduction of translational cardiovascular research. Springer International Publishing, Switzerland pp 205–216

    Google Scholar 

  22. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D et al (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42:718–724

    Article  CAS  PubMed  Google Scholar 

  23. Cokkinos DV, Pantos C (2011) Type 1 diabetes impairs compensatory response after myocardial infarction; role of tissue hypothyroidism and effects of thyroid hormone administration. Bull Acad Natl Med 195:164–165

    Google Scholar 

  24. Nickel A, Löffler J, Maack C (2013) Myocardial energetics in heart failure. Basic Res Cardiol 108:358

    Article  PubMed  Google Scholar 

  25. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  CAS  PubMed  Google Scholar 

  26. Harvey CB, Williams GR (2002) Mechanism of thyroid hormone action. Thyroid 12:441–446

    Article  CAS  PubMed  Google Scholar 

  27. Gromberg Maitland M, Frishman WH (1998) Thyroid hormone and vascular disease. Am Heart J 135:187–196

    Article  Google Scholar 

  28. Kahaly GJ, Dillman WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    Article  CAS  PubMed  Google Scholar 

  29. Vicinanza R, Cappotelli G, Malacrino C, Nardo T, Buchetti B, Lenti L et al (2013) Oxidized low density liporoteins impair endothelial function by inhibiting non-genomic action of thyroid hormone- mediated nitric oxide production in human endothelial cells. Thyroid 23:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV (2004) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120

    Article  CAS  PubMed  Google Scholar 

  31. Giannocco G, Dos Santos RA, Nunes MT (2004) Thyroid hormone stimulate myoglobin gene expression in rat cardiac muscle. Mol Cell Endocinol 226:19–26

    Article  CAS  Google Scholar 

  32. Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nicolini G, Pitto L, Kusmic C, Balzan S, Sabatino L (2013) New insights into mechanisms of cardioprotection mediated by thyroid hormones. J Thyroid Res 264387

  34. Cokkinos DV, Pantos C (2009) Thyroid hormones and their action on the myocardium. Bull Acad Natl Med 193:327–338

    CAS  PubMed  Google Scholar 

  35. Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy: response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71:831–839

    Article  CAS  PubMed  Google Scholar 

  36. Carluccio E, Biagioli P, Alunni G, Murrone A, Giombolini C, Ragni T et al (2006) Patients with hibernating myocardium show altered left ventricular volumes and shape, which revert after revascularization: evidence that dyssynergy might directly induce cardiac remodeling. J Am Coll Cardiol 47:969–977

    Article  PubMed  Google Scholar 

  37. Harper ME, Seifert EL (2008) Thyroid hormone effects on mitochondrial energetics. Thyroid 18:145–156

    Article  CAS  PubMed  Google Scholar 

  38. Hroudová J, Fišar Z (2013) Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 8:363–375

    PubMed  PubMed Central  Google Scholar 

  39. Tomanek RJ, Zimmerman MB, Suvarna PR, Morkin E, Pennock GD, Goldman S (1998) A thyroid hormone analog stimulates angiogenesis in the post-infarcted rat heart. J Mol Cell Cardiol 30:923–932

    Article  CAS  PubMed  Google Scholar 

  40. Mariani E, Ravaglia G, Forti P, Meneghetti A, Tarozzi A, Maioli F et al (1999) Vitamin D, thyroid hormones and muscle mass influence natural killer (NK) innate immunity in healthy nonagenarians and centenarians. Clin Exp Immunol 116:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kmiec Z, Myśliwska J, Rachón D, Kotlarz G, Sworczak K, Myśliwski A (2001) Natural killer activity and thyroid hormone levels in young and elderly persons. Gerontology 47:282–288

    Article  CAS  PubMed  Google Scholar 

  42. Topkara VK, Mann DL (2010) Clinical applications of miRNAs in cardiac remodeling and heart failure. Per Med 7:531–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Devaux Y, Vausort M, McCann GP, Kelly D, Collignon O, Ng LL et al (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS One 8:e70644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS (2014) Thyroid hormone-regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol 5:171

    Google Scholar 

  45. Yang X, Rodriguez M, Pabon L (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD, Panagiotou M, Cokkinos DV (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339

    Article  PubMed  Google Scholar 

  47. Rybin V, Steinberg SF (1996) Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res 79:388–398

    Article  CAS  PubMed  Google Scholar 

  48. Ferreira JC, Brum PC, Mochly-Rosen D (2011) βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 51:479–484

    Article  CAS  PubMed  Google Scholar 

  49. Belke DD, Gloss B, Hollander JM, Swanson EA, Duplain H, Dillmann WH (2006) In vivo gene delivery of HSP70i by adenovirus and adeno-associated virus preserves contractile function in mouse heart following ischemia-reperfusion. Am J Physiol Heart Circ Physiol 291:H2905–H2910

    Article  CAS  PubMed  Google Scholar 

  50. Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    CAS  PubMed  Google Scholar 

  51. Pantos C, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N et al (2002) Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12:325–329

    Article  CAS  PubMed  Google Scholar 

  52. Wei M, Xin P, Li S, Tao J, Li Y, Li J et al (2011) Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. Circ Res 108:1220–1225

    Article  CAS  PubMed  Google Scholar 

  53. Ojamaa K, Kenessey A, Shenoy R, Klein I (2000) Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol 279:E1319–E1324

    CAS  Google Scholar 

  54. Pennock GD, Raya TE, Bahl JJ, Goldman S, Morkin E (1993) Combination treatment with captopril and the thyroid hormone analogue 3,5-diiodothyropropionic acid: a new approach to improving left ventricular performance in heart failure. Circulation 88:1289–1298

    Article  CAS  PubMed  Google Scholar 

  55. Mahaffey KW, Raya TE, Pennock GD, Morkin E, Goldman S (1995) Left ventricular performance and remodeling in rabbits after myocardial infarction: effects of a thyroid hormone analogue. Circulation 91:794–801

    Article  CAS  PubMed  Google Scholar 

  56. Talukder MA, Yang F, Nishijima Y, Chen CA, Xie L, Mahamud SD et al (2011) Detrimental effects of thyroid hormone analog DITPA in the mouse heart: increased mortality with in vivo acute myocardial ischemia-reperfusion. Am J Physiol 300:H702–H711

    CAS  Google Scholar 

  57. Pennock GD, Raya TE, Bahl JJ, Goldman S, Morkin E (1992) Cardiac effects of 3,5-diiodothyropropionic acid, a thyroid hormone analog with inotropic selectivity. J Pharmacol Exp Ther 263:163–169

    CAS  PubMed  Google Scholar 

  58. Davis PJ, Davis FB, Lin HY, Mousa SA, Zhou M, Luidens MK (2009) Translational implications of nongenomic actions of thyroid hormone initiated at its integrin receptor. J Endocrinol Metab 297:E1238–E1246

    Article  CAS  Google Scholar 

  59. Verhoeven FA, Van der Putten HH, Hennemann G, Lamers JM, Visser TJ, Everts ME (2002) Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs. J Endocrinol 173:247–255

    Article  CAS  PubMed  Google Scholar 

  60. Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M (2011) Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med 15:514–524

    Article  CAS  PubMed  Google Scholar 

  61. Pantos C, Mourouzis I, Markakis K, Dimopoulos A, Xinaris C, Kokkinos AD et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiol Thorac Surg 32:333–339

    Article  Google Scholar 

  62. Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318

    Article  CAS  PubMed  Google Scholar 

  63. Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N et al (2009) Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60:49–56

    CAS  PubMed  Google Scholar 

  64. Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D et al (2010) Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345:161–169

    Article  CAS  PubMed  Google Scholar 

  65. Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD (2013) Thyroid hormone improves the mechanical performance of the post-infarcted diabetic myocardium: a response associated with up-regulation of Akt/mTOR and AMPK activation. Metabolism 13:87–93

    Google Scholar 

  66. Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD et al (2012) Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Mol Cell Biochem 363:235–243

    Article  CAS  PubMed  Google Scholar 

  67. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A (2002) Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 277:22896–22901

    Article  CAS  PubMed  Google Scholar 

  68. Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, Bhandari B, Abboud HE (2015) NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 131:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. De Sibio MT, Luvizotto RA, Olimpio RM, Corrêa CR, Marino J, de Oliveira M et al (2013) A comparative genotoxicity study of a supraphysiological dose of triiodothyronine (T3) in obese rats subjected to either calorie-restricted diet or hyperthyroidism. PLoS One 8:e56913

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hajje G, Saliba Y, Itani T, Moubarak M, Aftimos G, Farès N (2014) Hypothyroidism and its rapid correction alter cardiac remodeling. PLoS One 9:e109753

    Article  PubMed  PubMed Central  Google Scholar 

  71. Henderson KK, Danzi S, Paul JT, Leya G, Klein I, Samarel AM (2009) Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail 2:243–252

    Article  PubMed  Google Scholar 

  72. Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM (2013) Improvement of left ventricular remodeling after myocardial infarction with eight weeks L-thyroxine treatment in rats. J Transl Med 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q et al (2008) Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187

    Article  CAS  PubMed  Google Scholar 

  74. Pantos C, Mourouzis I, Cokkinos DV (2010) Thyroid hormone as a therapeutic option for treating ischaemic heart disease: from early reperfusion to late remodelling. Vasc Pharmacol 52:157–165

    Article  CAS  Google Scholar 

  75. Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A et al (2014) Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med 20:302–312

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nicolini G, Forini F, Kusmic C, Pitto L, Mariani L, Iervasi G (2015) Early and short-term triiodothyronine supplementation prevents adverse postischemic cardiac remodeling: role of transforming growth factor-β1 and antifibrotic miRNA signaling. Mol Med 21:900–911

    Google Scholar 

  77. Zhang Y, Dedkov EI, Lee B 3rd, Li Y, Pun K, Gerdes AM (2014) Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction-heart failure model. Cardiac Fail 20:1012–1019

    Article  CAS  Google Scholar 

  78. Morkin E, Pennock GD, Spooner PH, Bahl JJ, Goldman S (2002) Clinical and experimental studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid 12:527–533

    Article  CAS  PubMed  Google Scholar 

  79. Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S et al (2009) DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation 119:3093–3100

    Article  CAS  PubMed  Google Scholar 

  80. Pingitore A, Iervasi G, Gerdes MA (2010) Letter by Pingitore et al regarding article, “DITPA (3, 5-diiodothyropropionic acid), a thyroid hormone analog to treat heart failure: phase II trial Veterans Affairs cooperative study”. Circulation 121:e240

    Article  CAS  PubMed  Google Scholar 

  81. Jabbar A, Ingoe L, Pearce S, Zaman A, Razvi S (2015) Thyroxine in acute myocardial infarction (ThyrAMI): levothyroxine in subclinical hypothyroidism post-acute myocardial infarction: study protocol for a randomised controlled trial. Trials 16:115

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165:107–114

    Article  CAS  PubMed  Google Scholar 

  83. Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV et al (2013) Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact CardioVasc Thorac Surg 17:664–668

    Article  PubMed  PubMed Central  Google Scholar 

  84. Weltman NY, Ojamaa K, Savinova OV, Chen YF, Schlenker EH, Zucchi R et al (2013) Restoration of cardiac tissue thyroid hormone status in experimental hypothyroidism: a dose-response study in female rats. Endocrinology 154:2542–2552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis V. Cokkinos.

Ethics declarations

Conflict of interest

No conflict of interest to declare for this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cokkinos, D.V., Chryssanthopoulos, S. Thyroid hormones and cardiac remodeling. Heart Fail Rev 21, 365–372 (2016). https://doi.org/10.1007/s10741-016-9554-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9554-7

Keywords

Navigation