Skip to main content

Advertisement

Log in

The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Thyroid hormone (TH) has a fundamental role in cardiovascular homeostasis in both physiological and pathological conditions, influencing cardiac contractility, heart rate (HR), diastolic function and systemic vascular resistance (SVR) through genomic and non-genomic mediated effects. In heart failure (HF) the main alteration of thyroid function is referred to as “low-triiodothyronine (T3) syndrome” (LT3S) characterized by decreased total serum T3 and free T3 (fT3) with normal levels of thyroxine (T4) and thyrotropin (TSH). Even if commonly interpreted as an adaptive factor, LT3S may have potential negative effects, contributing to the progressive deterioration of cardiac function and myocardial remodeling in HF and representing a powerful predictor of mortality in HF patients. All these observations, together with the early evidence of the benefits of T3 administration in HF patients indicate that placebo-controlled prospective studies are now needed to better define the safety and prognostic effects of chronic treatment with synthetic TH in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018. doi:10.1056/NEJMra021498

    PubMed  Google Scholar 

  2. Francis GS (2001) Pathophysiology of chronic heart failure. Am J Med 110(Suppl 7A):37S–46S. doi:10.1016/S0002-9343(98)00385-4

    PubMed  Google Scholar 

  3. Mann DL (1999) Mechanisms and models in heart failure—a combinatorial approach. Circulation 100:999–1008

    PubMed  CAS  Google Scholar 

  4. Packer M (1992) The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. Am J Cardiol 20:248–254

    CAS  Google Scholar 

  5. Bleumink GS, Knetsch AM, Sturkenboom MC et al (2004) Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J 25:1614–1619. doi:10.1016/j.ehj.2004.06.038

    PubMed  Google Scholar 

  6. Klein I, Ojamaa K (2004) Thyroid hormone and the cardiovascular system. N Engl J Med 244:501–507

    Google Scholar 

  7. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728. doi:10.1210/er.2003-0033

    PubMed  CAS  Google Scholar 

  8. Klein I, Danzi S (2007) Thyroid disease and the heart. Circulation 116:1725–1735. doi:10.1161/CIRCULATIONAHA.106.678326

    PubMed  Google Scholar 

  9. Iervasi G, Molinaro S, Landi P et al (2007) Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med 167:1526–1532. doi:10.1001/archinte.167.14.1526

    PubMed  Google Scholar 

  10. Hamilton MA, Stevenson LW, Luu M et al (1990) Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 16:91–95

    Article  PubMed  CAS  Google Scholar 

  11. Ascheim DD, Hryniewicz K (2002) Thyroid hormone metabolism in patients with congestive heart failure: the low triiodothyronine state. Thyroid 12:511–515. doi:10.1089/105072502760143908

    PubMed  CAS  Google Scholar 

  12. Iervasi G, Pingitore A, Landi P et al (2003) Low-T3 syndrome—a strong prognostic predictor of death in patients with heart disease. Circulation 107:708–713. doi:10.1161/01.CIR.0000048124.64204.3F

    PubMed  Google Scholar 

  13. Pingitore A, Landi P, Taddei MC et al (2005) Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118:132–136. doi:10.1016/j.amjmed.2004.07.052

    PubMed  CAS  Google Scholar 

  14. Opasich C, Pacini F, Ambrosino N et al (1996) Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur Heart J 17:1860–1866

    PubMed  CAS  Google Scholar 

  15. Kozdag G, Ural D, Vural A et al (2005) Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail 7:113–118. doi:10.1016/j.ejheart.2004.04.016

    PubMed  CAS  Google Scholar 

  16. Pingitore A, Iervasi G, Barison A et al (2006) Early activation of an altered thyroid hormone profile in asymptomatic or mildly symptomatic idiopathic left ventricular dysfunction. J Card Fail 12:520–526. doi:10.1016/j.cardfail.2006.05.009

    PubMed  CAS  Google Scholar 

  17. Pilo A, Iervasi G, Vitek F et al (1990) Thyroidal and peripheral production of 3, 5, 3′-triiodothyronine in humans by mental analysis. Am J Physiol 258:E715–E726

    PubMed  CAS  Google Scholar 

  18. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

  19. Bianco AC, Salvatore D, Gereben B et al (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23:38–89. doi:10.1210/er.23.1.38

    PubMed  CAS  Google Scholar 

  20. Everts ME, Verhoeven FA, Bezstarosti K et al (1996) Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 137:4235–4242. doi:10.1210/en.137.10.4235

    PubMed  CAS  Google Scholar 

  21. Sabatino L, Iervasi G, Ferrazzi P et al (2000) A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci 68:191–202. doi:10.1016/S0024-3205(00)00929-2

    PubMed  CAS  Google Scholar 

  22. Wassen FW, Schiel AE, Kuiper GG et al (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143:2812–2815. doi:10.1210/en.143.7.2812

    PubMed  CAS  Google Scholar 

  23. Simonides WS, Mulcahey MA, Redout EM et al (2008) Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 118:975–983

    PubMed  CAS  Google Scholar 

  24. Brent GA (1994) The molecular basis of thyroid hormone action. N Engl J Med 31:847–853. doi:10.1056/NEJM199409293311306

    Google Scholar 

  25. Davis PJ, Davis FB (2002) Nongenomic actions of thyroid hormone on the heart. Thyroid 12:459–466. doi:10.1089/105072502760143827

    PubMed  CAS  Google Scholar 

  26. Wrutniak-Cabello C, Casas F, Cabello G (2001) Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77. doi:10.1677/jme.0.0260067

    PubMed  CAS  Google Scholar 

  27. Bassett JH, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213:1–11. doi:10.1016/j.mce.2003.10.033

    PubMed  CAS  Google Scholar 

  28. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193. doi:10.1210/er.14.2.184

    PubMed  CAS  Google Scholar 

  29. Wu Y, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends Endocrinol Metab 11:207–211. doi:10.1016/S1043-2760(00)00263-0

    PubMed  CAS  Google Scholar 

  30. Shibusawa N, Hollenberg AN, Wondisford FE (2003) Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J Biol Chem 278:732–738. doi:10.1074/jbc.M207264200

    PubMed  CAS  Google Scholar 

  31. Lazar MA (2003) Thyroid hormone action: a binding contract. J Clin Invest 112:497–499

    PubMed  CAS  Google Scholar 

  32. Davis PJ, Shih A, Lin HY et al (2000) Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biochem 275:38032–38039

    CAS  Google Scholar 

  33. Frank KF, Bölck B, Erdmann E et al (2003) Sarcoplasmic reticulum Ca2 + -ATPase modulates cardiac contraction and relaxation. Cardiovasc Res 57:20–27. doi:10.1016/S0008-6363(02)00694-6

    PubMed  CAS  Google Scholar 

  34. Koss KL, Kranias EG (1996) Phospholamban: a prominent regulator of myocardial contractility. Circ Res 79:1059–1063

    PubMed  CAS  Google Scholar 

  35. Ojamaa K, Petrie JF, Balkman C (1994) Posttranscriptional modification of myosin heavy-chain gene expression in the hypertrophied rat myocardium. Proc Natl Acad Sci USA 91:3468–3472. doi:10.1073/pnas.91.8.3468

    PubMed  CAS  Google Scholar 

  36. Klein I, Ojamaa K (2001) Thyroid hormone targeting the vascular smooth muscle cell. Circ Res 88:260–261

    PubMed  CAS  Google Scholar 

  37. Ojamaa K, Klemperer JD, Klein I (1996) Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6:505–512

    PubMed  CAS  Google Scholar 

  38. Colantuoni A, Marchiafava PL, Lapi D et al (2005) Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288:H1931–H1936. doi:10.1152/ajpheart.00931.2004

    PubMed  CAS  Google Scholar 

  39. Mizuma H, Murakami M, Mori M (2001) Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deiodinase. Circ Res 88:313–318

    PubMed  CAS  Google Scholar 

  40. Fukuyama K, Ichiki T, Takeda K et al (2003) Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. Hypertension 41:598–603. doi:10.1161/01.HYP.0000056524.35294.80

    PubMed  CAS  Google Scholar 

  41. Fommei E, Iervasi G (2002) The role of thyroid hormone in blood pressure homeostasis: evidence from short-term hypothyroidism in humans. J Clin Endocrinol Metab 87:1996–2000. doi:10.1210/jc.87.5.1996

    PubMed  CAS  Google Scholar 

  42. Dernellis J, Panaretou M (2002) Effects oh thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724. doi:10.1067/mhj.2002.120766

    PubMed  CAS  Google Scholar 

  43. Biondi B, Palmieri EA, Lombardi G et al (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87:968–974. doi:10.1210/jc.87.3.968

    PubMed  CAS  Google Scholar 

  44. Kimura K, Shinozaki Y, Jujo S (2006) Triiodothyronine acutely increases blood flow in the ventricles and kidneys of anesthesized rabbits. Thyroid 16:357–360. doi:10.1089/thy.2006.16.357

    PubMed  CAS  Google Scholar 

  45. Yoneda K, Takasu N, Higa S et al (1998) Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine. Thyroid 8:609–613

    PubMed  CAS  Google Scholar 

  46. Kasahara T, Tsunekawa K, Seki K et al (2006) Regulation of iodothyronine deiodinase and roles of thyroid hormones in human coronary artery smooth muscle cells. Atherosclerosis 18:207–214. doi:10.1016/j.atherosclerosis.2005.07.018

    Google Scholar 

  47. Baycan S, Erdogan D, Caliskan M et al (2007) Coronary flow reserve is impaired in subclinical hypothyroidism. Clin Cardiol 30:562–566. doi:10.1002/clc.20132

    PubMed  Google Scholar 

  48. Danzi S, Klein I (2004) Thyroid hormone and the cardiovascular system. Minerva Endocrinol 29:139–150

    PubMed  CAS  Google Scholar 

  49. Bengel FM, Nekolla S, Ziegler SI et al (2000) Effect of thyroid hormones on cardiac function and oxidative metabolism assessed noninvasively by positron emission tomography and magnetic resonance imaging. J Clin Endocrinol Metab 85:1822–1827. doi:10.1210/jc.85.5.1822

    PubMed  CAS  Google Scholar 

  50. Biondi B, Palmieri EA, Lombardi G et al (2002) Subclinical hypothyroidism and cardiac function. Thyroid 12:505–510. doi:10.1089/105072502760143890

    PubMed  Google Scholar 

  51. Ripoli A, Pingitore A, Favilli B et al (2005) Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 45:439–445. doi:10.1016/j.jacc.2004.10.044

    PubMed  Google Scholar 

  52. Rodondi N, Newman AB, Vittinghoff E et al (2005) Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med 165:2460–2466. doi:10.1001/archinte.165.21.2460

    PubMed  Google Scholar 

  53. Kahaly GJ (2000) Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid 10:665–679. doi:10.1089/10507250050137743

    PubMed  CAS  Google Scholar 

  54. Taddei S, Caraccio N, Virdis A et al (2003) Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab 88:3731–3737. doi:10.1210/jc.2003-030039

    PubMed  CAS  Google Scholar 

  55. Monzani F, Caraccio N, Kozàkowà M et al (2004) Effect of levothyroxine replacement on lipid profile and intima-media thickness in subclinical hypothyroidism: a double-blind, placebo- controlled study. J Clin Endocrinol Metab 89:2099–2106. doi:10.1210/jc.2003-031669

    PubMed  CAS  Google Scholar 

  56. Caraccio N, Ferrannini E, Monzani F (2002) Lipoprotein profile in subclinical hypothyroidism: response to replacement, a randomized placebocontrolled study. J Clin Endocrinol Metab 87:1533–1538. doi:10.1210/jc.87.4.1533

    PubMed  CAS  Google Scholar 

  57. Chen HS, Wu TE, Jap TS et al (2007) Subclinical hypothyroidism is a risk factor for nephropathy and cardiovascular diseases in Type 2 diabetic patients. Diabet Med 24:1336–1344. doi:10.1111/j.1464-5491.2007.02270.x

    PubMed  CAS  Google Scholar 

  58. Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G (2008) Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol 5:1296–1300

    Google Scholar 

  59. Hak AE, Pols HA, Visser TJ et al (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam study. Ann Intern Med 15(132):270–278

    Google Scholar 

  60. Rodondi N, Aujesky D, Vittinghoff E et al (2006) Subclinical hypothyroidism and the risk of coronary heart disease: a meta-analysis. Am J Med 119:541–551. doi:10.1016/j.amjmed.2005.09.028

    PubMed  Google Scholar 

  61. Sawin CT, Geller A, Wolf PA et al (1994) Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older patients. N Engl J Med 331:1249–1252. doi:10.1056/NEJM199411103311901

    PubMed  CAS  Google Scholar 

  62. Osman F, Gammage MD, Sheppard MC et al (2002) Clinical review 142: cardiac dysrhythmias and thyroid dysfunction: the hidden menace? J Clin Endocrinol Metab 87:963–967. doi:10.1210/jc.87.3.963

    PubMed  CAS  Google Scholar 

  63. Petretta M, Bonaduce D, Spinelli L et al (2001) Cardiovascular haemodynamics and cardiac autonomic control in patients with subclinical and overt hyperthyroidism. Eur J Endocrinol 145:691–696. doi:10.1530/eje.0.1450691

    PubMed  CAS  Google Scholar 

  64. Biondi B, Palmieri EA, Fazio S et al (2000) Endogenous subclinical hyperthyroidism affects quality of life and cardiac morphology and function in young and middle-aged patients. J Clin Endocrinol Metab 85:4701–4705. doi:10.1210/jc.85.12.4701

    PubMed  CAS  Google Scholar 

  65. Biondi B, Palmieri EA, Lombardi G et al (2002) Effects of subclinical thyroid dysfunction on the heart. Ann Intern Med 137:904–914

    PubMed  Google Scholar 

  66. Mercuro G, Panzuto MG, Bina A et al (2000) Cardiac function, physical exercise capacity, and quality of life during long-term thyrotropin-suppressive therapy with levothyroxine: effect of individual dose tailoring. J Clin Endocrinol Metab 85:159–164. doi:10.1210/jc.85.1.159

    PubMed  CAS  Google Scholar 

  67. Parle JV, Maisonneuve P, Sheppard MC et al (2001) Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet 358:861–865. doi:10.1016/S0140-6736(01)06067-6

    PubMed  CAS  Google Scholar 

  68. Surks MI, Ortiz E, Daniels GH et al (2004) Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. J Am Med Assoc 291:228–238. doi:10.1001/jama.291.2.228

    CAS  Google Scholar 

  69. Singh S, Duggal J, Molnar J et al (2008) Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int J Cardiol 125:41–48. doi:10.1016/j.ijcard.2007.02.027

    PubMed  Google Scholar 

  70. Cappola AR, Fried LP, Arnold AM et al (2006) Thyroid status, cardiovascular risk, and mortality in older adults. J Am Med Assoc 295:1033–1041. doi:10.1001/jama.295.9.1033

    CAS  Google Scholar 

  71. Imaizumi M, Akahoshi M, Ichimaru S et al (2004) Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J Clin Endocrinol Metab 89:3365–3370. doi:10.1210/jc.2003-031089

    PubMed  CAS  Google Scholar 

  72. Walsh JP, Bremner AP, Bulsara MK et al (2005) Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med 165:2467–2472. doi:10.1001/archinte.165.21.2467

    PubMed  Google Scholar 

  73. Asvold BO, Bjøro T, Nilsen TI et al (2008) Thyrotropin levels and risk of fatal coronary heart disease: the HUNT Study. Arch Intern Med 168:855–860. doi:10.1001/archinte.168.8.855

    PubMed  Google Scholar 

  74. Eisenstein Z, Hagg S, Vagenakis AG et al (1978) Effect of starvation on the production and peripheral metabolism of 3, 3′, 5′-triiodothyronine in euthyroid obese subjects. J Clin Endocrinol Metab 47:889–893

    PubMed  CAS  Google Scholar 

  75. Eber B, Schumacher M, Langsteger W et al (1995) Changes in thyroid hormone parameters after acute myocardial infarction. Cardiology 86:152–156

    PubMed  CAS  Google Scholar 

  76. Friberg L, Werner S, Eggertsen G et al (2002) Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162:1388–1394. doi:10.1001/archinte.162.12.1388

    PubMed  CAS  Google Scholar 

  77. Holland FW 2nd, Brown PS Jr, Weintraub BD et al (1991) Cardiopulmonary bypass and thyroid function: a “euthyroid sick syndrome”. Ann Thorac Surg 52:46–50

    PubMed  Google Scholar 

  78. Klemperer JD, Klein I, Gomez M et al (1955) Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 333:1522–1527. doi:10.1056/NEJM199512073332302

    Google Scholar 

  79. Murzi B, Iervasi G, Masini S et al (1995) Thyroid hormones homeostasis in pediatric patients during and after cardiopulmonary bypass. Ann Thorac Surg 59:481–485. doi:10.1016/0003-4975(94)00879-C

    PubMed  CAS  Google Scholar 

  80. Sabatino L, Cerillo AG, Ripoli A et al (2002) Is the low tri-iodothyronine state a crucial factor in determining the outcome of coronary artery bypass patients? Evidence from a clinical pilot study. J Endocrinol 175:577–586. doi:10.1677/joe.0.1750577

    PubMed  CAS  Google Scholar 

  81. Wartofsky L, Barman KD (1982) Alteration in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”. Endocr Rev 3:164–217

    PubMed  CAS  Google Scholar 

  82. Peeters RP, Wouters PJ, Kaptein E et al (2003) Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab 88:3202–3211. doi:10.1210/jc.2002-022013

    PubMed  CAS  Google Scholar 

  83. Chopra IJ, Wu SY, Teco GN et al (1992) A radioimmunoassay for measurement of 3, 5, 3′-triiodothyronine sulfate: studies in thyroidal and nonthyroidal diseases, pregnancy, and neonatal life. J Clin Endocrinol Metab 1:189–194. doi:10.1210/jc.75.1.189

    Google Scholar 

  84. Peeters RP, Kester MH, Wouters PJ et al (2005) Increased thyroxine sulfate levels in critically ill patients as a result of a decreased hepatic type I deiodinase activity. J Clin Endocrinol Metab 90:6460–6465. doi:10.1210/jc.2005-0866

    PubMed  CAS  Google Scholar 

  85. Duntas LH, Nguyen TT, Keck FS et al (1999) Changes in metabolism of TRH in euthyroid sick syndrome. Eur J Endocrinol 141:337–341. doi:10.1530/eje.0.1410337

    PubMed  CAS  Google Scholar 

  86. Boelen A, Platvoet-Ter Schiphorst MC, Wiersinga WM (1993) Association betxeen serum interleukin-6 and serum 3, 5, 3′- triiodothyronine in nonthyroidal illness. J Clin Endocrinol Metab 77:1695–1699. doi:10.1210/jc.77.6.1695

    PubMed  CAS  Google Scholar 

  87. Stouthard JM, Van der Poll T, Ebdert E et al (1994) Effects of acute and chronic IL-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab 79:1342–1346. doi:10.1210/jc.79.5.1342

    PubMed  CAS  Google Scholar 

  88. Bartalena L, Bogazzi F, Brogioni S et al (1998) Role of cytokines in the pathogenesis of the euthyroid sick syndrome. Eur J Endocrinol 138:603–614. doi:10.1530/eje.0.1380603

    PubMed  CAS  Google Scholar 

  89. Kimura T, Kanda T, Kotajima N et al (2000) Involvment of circulating IL-6 and its receptor in the development o euthyroid sick syndrome in patients with acute myocardial infarction. Eur J Endocrinol 143:179–184. doi:10.1530/eje.0.1430179

    PubMed  CAS  Google Scholar 

  90. Reichlin S (1993) Neuroendocrine-Immune interactions. N Engl J Med 329:1246–1253. doi:10.1056/NEJM199310213291708

    PubMed  CAS  Google Scholar 

  91. Sylvén C, Jansson E, Sotonyi P et al (1996) Cardiac nuclear hormone receptor mRNA in heart failure in man. Life Sci 59:1917–1922. doi:10.1016/S0024-3205(96)00539-5

    PubMed  Google Scholar 

  92. Kinugawa K, Yonekura K, Ribeiro RC et al (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89:591–598. doi:10.1161/hh1901.096706

    PubMed  CAS  Google Scholar 

  93. Liu Y, Redetzke RA, Said S et al (2008) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294:H2137–H2143. doi:10.1152/ajpheart.01379.2007

    PubMed  CAS  Google Scholar 

  94. Sabatino L, Gliozheni E, Molinaro S et al (2007) Thyroid hormone receptor and IGF1/IGFR systems: possible relations in the human heart. Biomed Pharmacother 61:457–462. doi:10.1016/j.biopha.2007.04.002

    PubMed  CAS  Google Scholar 

  95. Belke DD, Gloss B, Swanson EA et al (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2870–2877. doi:10.1210/en.2007-0009

    PubMed  CAS  Google Scholar 

  96. Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101:10332–10337. doi:10.1073/pnas.0401843101

    PubMed  CAS  Google Scholar 

  97. Kinugawa K, Minobe WA, Wood WM et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  98. Izumo S, Lompré AM, Matsuoka R et al (1987) Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest 79:970–977. doi:10.1172/JCI112908

    PubMed  CAS  Google Scholar 

  99. Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80:15L–25L. doi:10.1016/S0002-9149(97)00845-X

    PubMed  CAS  Google Scholar 

  100. Haghighi K, Schmidt AG, Hoit BD et al (2001) Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem 276:24145–24152. doi:10.1074/jbc.M102403200

    PubMed  CAS  Google Scholar 

  101. Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931. doi:10.1161/hc4901.100526

    PubMed  CAS  Google Scholar 

  102. Katzeff HL, Powell SR, Ojamaa K (1997) Alterations in cardiac contractility and gene expression during low-T3 syndrome: prevention with T3. Am J Physiol 273:E951–E956

    PubMed  CAS  Google Scholar 

  103. Ladenson PW, Sherman SI, Baughman KL et al (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89:5251–5255. doi:10.1073/pnas.89.12.5251

    PubMed  CAS  Google Scholar 

  104. Forini F, Paolicchi A, Pizzorusso T et al (2001) 3, 5, 3′-Triiodothyronine deprivation affects phenotype and intracellular [Ca2 +]i of human cardiomyocytes in culture. Cardiovasc Res 51:322–330. doi:10.1016/S0008-6363(01)00287-5

    PubMed  CAS  Google Scholar 

  105. Pieske B, Kretschmann B, Meyer M et al (1995) Alteration in intracellular calcium handling associated with the inverse force frequency relation in human dilated cardiomyopathy. Circulation 92:1169–1178

    PubMed  CAS  Google Scholar 

  106. Hein S, Kostin S, Heling A et al (2000) The role of cytoskeleton in heart failure. Cardiovasc Res 45:273–278. doi:10.1016/S0008-6363(99)00268-0

    PubMed  CAS  Google Scholar 

  107. Pantos C, Xinaris C, Mourouzis I et al (2007) Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 297:65–72. doi:10.1007/s11010-006-9323-3

    PubMed  CAS  Google Scholar 

  108. Lee HW, Klein LE, Raser J et al (1998) An activator protein-1 (AP-1) response element on pro alpha1(l) collagen gene is necessary for thyroid hormone-induced inhibition of promoter activity in cardiac fibroblasts. J Mol Cell Cardiol 30:2495–2506. doi:10.1006/jmcc.1998.0811

    PubMed  CAS  Google Scholar 

  109. Yao J, Eghbali M (1992) Decreased collagen mRNA and regression of cardiac fibrosis in the ventricular myocardium of the tight skin mouse following thyroid hormone treatment. Cardiovasc Res 26:603–607. doi:10.1093/cvr/26.6.603

    PubMed  CAS  Google Scholar 

  110. Wong K, Boheler KR, Petrou M (1997) Pharmacological modulation of pressure-overload cardiac hypertrophy: changes in ventricular function, extracellular matrix, and gene expression. Circulation 96:2239–2246

    PubMed  CAS  Google Scholar 

  111. Janicki JS, Brower GL, Gardner JD et al (2004) The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 9:33–42. doi:10.1023/B:HREV.0000011392.03037.7e

    PubMed  CAS  Google Scholar 

  112. Khalife WI, Tang YD, Kuzman JA et al (2005) Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2409–H2415. doi:10.1152/ajpheart.00483.2005

    PubMed  CAS  Google Scholar 

  113. Ryoke T, Gu Y, Ikeda Y et al (2002) Apoptosis and oncosis in the early progression of left ventricular dysfunction in the cardiomyopathic hamster. Basic Res Cardiol 97:65–75. doi:10.1007/s395-002-8389-4

    PubMed  Google Scholar 

  114. Tomanek RJ, Schatteman GC (2000) Angiogenesis: new insights and therapeutic potential. Anat Rec 261:126–135. doi:10.1002/1097-0185(20000615)261:3<126::AID-AR7>3.0.CO;2-4

    PubMed  CAS  Google Scholar 

  115. Wang X, Zheng W, Christensen LP et al (2003) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284:H613–H618

    PubMed  CAS  Google Scholar 

  116. Zheng W, Weiss RM, Wang X et al (2004) DITPA stimulates arteriolar growth and modifies myocardial postinfarction remodeling. Am J Physiol Heart Circ Physiol 286:H1994–H2000. doi:10.1152/ajpheart.00991.2003

    PubMed  CAS  Google Scholar 

  117. Davis FB, Mousa SA, O’Connor L et al (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94:1500–1506. doi:10.1161/01.RES.0000130784.90237.4a

    PubMed  CAS  Google Scholar 

  118. van den Heuvel AF, van Veldhuisen DJ, van der Wall EE et al (2000) Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 35:19–28. doi:10.1016/S0735-1097(99)00499-4

    PubMed  Google Scholar 

  119. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 15:186–193. doi:10.1161/hc0202.102119

    Google Scholar 

  120. Pantos C, Malliopoulou V, Varonos DD et al (2003) Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol 99:101–120. doi:10.1007/s00395-003-0449-0

    PubMed  Google Scholar 

  121. Liu Q, Clanachan AS, Lopaschuk GD (1998) Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275:E392–E399

    PubMed  CAS  Google Scholar 

  122. Chen YF, Kobayashi S, Chen J et al (2008) Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44:180–187. doi:10.1016/j.yjmcc.2007.09.009

    PubMed  CAS  Google Scholar 

  123. Pantos C, Malliopoulou V, Mourouzis I et al (2003) Thyroxine pretreatment increases basal myocardial heat-shock protein 27 expression and accelerates translocation and phosphorylation of this protein upon ischaemia. Eur J Pharmacol 478:53–60. doi:10.1016/j.ejphar.2003.08.030

    PubMed  CAS  Google Scholar 

  124. Pantos C, Malliopoulou V, Mourouzis I et al (2006) Hyperthyroid hearts display a phenotype of cardioprotection against ischemic stress: a possible involvement of heat shock protein 70. Horm Metab Res 38:308–313. doi:10.1055/s-2006-925404

    PubMed  CAS  Google Scholar 

  125. Giannessi D, Colotti C, Maltinti M et al (2007) Circulating heat shock proteins and inflammatory markers in patients with idiopathic left ventricular dysfunction: their relationships with myocardial and microvascular impairment. Cell Stress Chaperones 12:265–274. doi:10.1379/CSC-272.1

    PubMed  CAS  Google Scholar 

  126. Emdin M, Passino C, Prontera C et al (2004) Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin Chem Lab Med 42:627–636. doi:10.1515/CCLM.2004.108

    PubMed  CAS  Google Scholar 

  127. Pingitore A, Iervasi G (2008) Triiodothyronine (T3) effects on cardiovascular system in patients with heart failure. Recent Patents Cardiovasc Drug Discov 3:19–27

    CAS  Google Scholar 

  128. Chopra IJ (1997) Euthyroid sick syndrome: is it a misnomer? J Clin Endocrinol Metab 82:329–334. doi:10.1210/jc.82.2.329

    PubMed  CAS  Google Scholar 

  129. De Groot LJ (1999) Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab 84:151–164. doi:10.1210/jc.84.1.151

    PubMed  Google Scholar 

  130. Klein I, Danzi S (2008) Thyroid hormone treatment to mend a broken heart. J Clin Endocrinol Metab 93:1172–1174. doi:10.1210/jc.2008-0291

    PubMed  CAS  Google Scholar 

  131. Pantos C, Mourouzis I, Markakis K et al (2007) Thyroid hormone attenuates cardiac remodeling and improves hemodynamics early after acute myocardial infarction in rats. Eur J Cardiothorac Surg 32:333–339. doi:10.1016/j.ejcts.2007.05.004

    PubMed  Google Scholar 

  132. Brokhin M, Klein I (2005) Low T3 syndrome in a patient with acute myocarditis. Clin Cornerstone 7(Suppl 2):S28–S29. doi:10.1016/S1098-3597(05)80057-2

    PubMed  Google Scholar 

  133. Malik FS, Mehra MR, Uber PA et al (1999) Intravenous thyroid hormone supplementation in heart failure with cardiogenic shock. J Card Fail 5:31–37. doi:10.1016/S1071-9164(99)90022-2

    PubMed  CAS  Google Scholar 

  134. Klemperer JD, Zelano J, Helm RE et al (1995) Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109:457–465. doi:10.1016/S0022-5223(95)70276-8

    PubMed  CAS  Google Scholar 

  135. Klemperer JD, Klein IL, Ojamaa K et al (1996) Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 61:1323–1327. doi:10.1016/0003-4975(96)00102-6

    PubMed  CAS  Google Scholar 

  136. Moruzzi P, Doria E, Agostoni PG et al (1994) Usefulness of L-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73:374–378. doi:10.1016/0002-9149(94)90011-6

    PubMed  CAS  Google Scholar 

  137. Moruzzi P, Doria E, Agostoni PG (1996) Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101:461–467. doi:10.1016/S0002-9343(96)00281-1

    PubMed  CAS  Google Scholar 

  138. Hamilton MA, Stevenson LW, Fonarow GC et al (1998) Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81:443–447. doi:10.1016/S0002-9149(97)00950-8

    PubMed  CAS  Google Scholar 

  139. Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93:1351–1358. doi:10.1210/jc.2007-2210

    PubMed  CAS  Google Scholar 

  140. Brenta G, Danzi S, Klein I (2007) Potential therapeutic applications of thyroid hormone analogs. Nat Clin Pract Endocrinol Metab 3:632–640. doi:10.1038/ncpendmet0590

    PubMed  CAS  Google Scholar 

  141. Pennock GD, Raya TE, Bahl JJ et al (1992) Cardiac effects of 3, 5-diiodothyropropionic acid, a thyroid hormone analog with inotropic selectivity. J Pharmacol Exp Ther 263:163–169

    PubMed  CAS  Google Scholar 

  142. Morkin E, Pennock GD, Spooner PH et al (2002) Clinical and experimental studies on the use of 3, 5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid 12:527–533. doi:10.1089/105072502760143935

    PubMed  CAS  Google Scholar 

  143. Morkin E, Ladenson P, Goldman S et al (2004) Thyroid hormone analogs for treatment of hypercholesterolemia and heart failure: past, present and future prospects. J Mol Cell Cardiol 37:1137–1146

    PubMed  CAS  Google Scholar 

  144. Trivieri MG, Oudit GY, Sah R et al (2006) Cardiac-specific elevations in thyroid hormone enhance contractility and prevent pressure overload-induced cardiac dysfunction. Proc Natl Acad Sci USA 103:6043–6048. doi:10.1073/pnas.0601072103

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Iervasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, E., Pingitore, A. & Iervasi, G. The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence. Heart Fail Rev 15, 155–169 (2010). https://doi.org/10.1007/s10741-008-9126-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-008-9126-6

Keywords

Navigation