Skip to main content
Log in

Effect of MR Blockade on Collagen Formation and Cardiovascular Disease with a Specific Emphasis on Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Collagen is the major extracellular matrix protein in the heart and represents a crucial target for anti-remodeling and cardioprotective therapy. Collagen quantity and quality have been shown to be regulated under various physiological and pathologic conditions. Excessive deposition of collagen, leading to cardiac fibrosis, is a major determinant of cardiac dysfunction and arrhythmogenecity associated with sudden death. Serological markers of collagen turnover were proven as a noninvasive reliable tool for monitoring from a distance cardiac tissue repair and fibrosis, both in experimental and clinical conditions. Some markers of collagen synthesis and degradation were shown to have a prognostic significance in myocardial infarction, cardiomyopathy and heart failure, and were reported as independent predictors of mortality. Aldosterone represents the end-product of the renin angiotensin aldosterone system and may play a role in cardiac collagen deposition independent of its effect on blood pressure. Production of aldosterone is mainly regulated by angiotensin II and is activated in the failing human ventricle in proportion to heart failure severity. Circulating or locally produced aldosterone stimulates fibrillar collagen accumulation in the heart directly via mineralocorticoid receptors or, indirectly, modifying angiotensine II receptors number and/or function. The use of mineralocorticoid receptor antagonists counters collagen deposition, even when used on top of classical RAAS inhibitors, such as ACE inhibitors and angiotensine II receptor blockers. There is now accumulating evidence from experimental and clinical studies showing antifibrotic and cardioprotective effect for aldosterone antagonists, spironolactone and eplerenone. In chronic heart failure and post myocardial infarction patients, aldosterone receptor blockade benefit was associated with decreased serum levels of collagen synthesis marker PIIINP (procollagen type III amino-terminal peptide), without affecting collagen degradation.

Understanding various autocrine/paracrine mechanisms involved in extracellular matrix remodeling in heart failure represents a major challenge, essential for developing new cardioreparative and cardioprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weber K. Cardiac interstitium in health and disease: The fibrillar collagen network. J Am Coll Cardiol 1989;13:1637–1652.

    CAS  PubMed  Google Scholar 

  2. Butt RP, Laurent GJ, Bishop JE. Collagen production and replication by cardiac fibrobalsts is enhanced in response to diverse classes of growth factors. Eur J Cell Biol 1995;68:330–335.

    CAS  PubMed  Google Scholar 

  3. Zhou G, Kandala JC, Tyagi SC, et al. Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol Cell Biochem 1996;154:171–178.

    CAS  PubMed  Google Scholar 

  4. Funck RC, Wilke A, Rupp H, et al. Regulation and role of myocardial collagen matrix remodeling in hypertensive heart disease. Adv Exp Med Biol 1997;432:35–44.

    CAS  PubMed  Google Scholar 

  5. Chua CC, Hamdy RC, Cha BH. Angiotensin II induces TIMP-1 production in rat heart endothelial cells. Biochim Biophys Acta 1996;1311:175–180.

    CAS  PubMed  Google Scholar 

  6. Liu YH, Yang XP, Sharov VG, et al. Effects of angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. J Clin Invest 1997;26:101–111.

    Google Scholar 

  7. Pauschinger M, Knopf D, Petschauer S, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 1999;99:2750–2756.

    CAS  PubMed  Google Scholar 

  8. Kawamoto RM, Suzuki G, Morita H, et al. Matrix metalloproteinase 2 and 9 activity is increased in dogs with progressive left ventricular failure. Circulation 2001;104:II–738.

    Google Scholar 

  9. Spinale FG. Matrix metalloproteinases: Regulation and dysregulation in the failing heart. Circ Res 2002;90:520–530.

    CAS  PubMed  Google Scholar 

  10. Thomas CV, Coker ML, Zellner JL, et al. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–1715.

    CAS  PubMed  Google Scholar 

  11. Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 1999;100:87–95.

    CAS  PubMed  Google Scholar 

  12. Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 2002;54:361–379.

    CAS  PubMed  Google Scholar 

  13. Xu J, Cui G, Esmailian F, et al. Atrial Extracellular Matrix Remodeling and the Maintenance of Atrial Fibrillation. Circulation 2004;109:363–368.

    CAS  PubMed  Google Scholar 

  14. Mukherjee D, Sen S. Alteration of cardiac collagen phenotypes in hypertension hypertrophy: Role of blood pressure. J Mol Cell Cardiol 1993;25:185–196.

    CAS  PubMed  Google Scholar 

  15. Mukherjee D, Sen S. Alteration of collagen phenotypes in ischemic cardiomyopathy. J Clin Invest 1991;88:1141–1146.

    CAS  PubMed  Google Scholar 

  16. Rhaleb N, Peng H, Harding P, et al. Effect of N-acetyl-seryl-aspartyl-lysyl proline on DNA and collagen synthesis in rat cardiac fibroblasts. Hypertension 2001;37:827–832.

    CAS  PubMed  Google Scholar 

  17. Sakata Y, Kazuhiro Y, Mano T, et al. Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats. Its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation 2004;109:2143–2149.

    CAS  PubMed  Google Scholar 

  18. Brilla CG, Funck RC, Rupp H. Lisinopril mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 2000;102:1388–1393.

    CAS  PubMed  Google Scholar 

  19. Laviades C, Mayor G, Diez J. Treatment with lisinopril normalizes serum concentrations of procollagen type III amino-terminal peptide in patients with essential hypertension. Am J Hypertens 1994;7:52–58.

    CAS  PubMed  Google Scholar 

  20. Varo N, Iraburu MJ, Varela M, et al. Chronic AT1 blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 2000;35:1197–11202.

    CAS  PubMed  Google Scholar 

  21. Pathak M, Sarkar S, Vellaichamy E, et al. Role of myocytes in myocardial collagen production. Hypertension 2001;37:833–840.

    CAS  PubMed  Google Scholar 

  22. Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovascular Research 2002;55:76–82.

    CAS  PubMed  Google Scholar 

  23. Lopez B, Querejeta R, Gonzalez A, et al. Effects of loop diuretics on myocardial fibrosis and collagen type I turnover in chronic heart failure. J Am Coll Cardiol 2004;43:2028–2035.

    CAS  PubMed  Google Scholar 

  24. Rizvi MA, Katwa L, Spadone DP, et al. The effects of endothelin-1 on collagen type I and type III synthesis in cultured porcine coronary artery vascular smooth muscle cells. J Mol Cell Cardiol 1996;28:243–252.

    CAS  PubMed  Google Scholar 

  25. Mulder P, Boujedaini J, Richard V, et al. Selective endothelin-A versus combined endothelin-A/endothelin-B receptor blockade in rat chronic heart failure. Circulation 2000;102:491–493.

    CAS  PubMed  Google Scholar 

  26. Weber KT. Monitoring tissue repair and fibrosis from a distance. Circulation 1997;96:2488–2892.

    CAS  PubMed  Google Scholar 

  27. Zannad F, Dousset B, Alla F. Treatment of congestive heart failure. Interfering the aldosterone cardiac extracellular matrix relationship. Hypertension 2001;38:1227–1232.

    CAS  PubMed  Google Scholar 

  28. Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure. Circulation 2000;102:2700–2706.

    CAS  PubMed  Google Scholar 

  29. Uusimaa P, Risteli J, Niemela M, et al. Collagen scar formation after acute myocardial infarction: Relationships to infarct size left ventricular function and coronary artery patency. Circulation 1997;96:2565–2572.

    CAS  PubMed  Google Scholar 

  30. Host NB, Jensen LT, Bendixen PM, et al. The aminoterminal propeptide of type III procollagen provides new information on prognosis after acute myocardial infarction. Am J Cardiol 1995;76:869–873.

    CAS  PubMed  Google Scholar 

  31. Poulsen S, Host N, Jensen S, et al. Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 2000;101:1527–1532.

    CAS  PubMed  Google Scholar 

  32. Manhenke C, Orn S, Zannad F, et al. Elevated levels of serum of C-terminal telopeptide of type I collagen (ICTP) are associated with increased mortality in patients following complicated acute myocardial infarction. Circulation 2003;108:689.

    Google Scholar 

  33. Klappacher G, Franzen P, Haab D, et al. Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 1995;75:913–918.

    CAS  PubMed  Google Scholar 

  34. Mizuno Y, Yoshimura M, Yasue H, et al. Aldosterone production is activated in failing ventricle in humans. Circulation 2001;103:72–77.

    CAS  PubMed  Google Scholar 

  35. Brilla CG, Weber KT. Mineralocorticoid excess dietary sodium and myocardial fibrosis. J Lab Clin Med 1992;120:893–901.

    CAS  PubMed  Google Scholar 

  36. Rocha R, Stier CT, Kifor I, et al. Aldosterone : A mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000;141:3871–3878.

    CAS  PubMed  Google Scholar 

  37. Lijnen P, Petrov V. Antagonism of the Renin-angiotensin-aldosterone system and collagen metabolism in cardiac fibroblasts. Methods Find Clin Pharmacol 1999;21:215–227.

    CAS  Google Scholar 

  38. Delcayre C, Silvestre J. Aldosterone and the heart: Towards a physiological function ? Cardiovasc Res 1999;43:7–12.

    CAS  PubMed  Google Scholar 

  39. Brilla CG, Maisch B, Weber K. Renin-angiotensin system and myocardial collagen matrix remodeling in hypertensive heart disease: In vivo and in vitro studies on collagen matrix regulation. Clin Invest 1993;71:S35–S41.

    CAS  Google Scholar 

  40. Rudolph A, Rocha R, McMahon EG. Aldosterone target organ protection by eplerenone. Molecular and Cellular Endocrinology 2004;217:229–238.

    CAS  PubMed  Google Scholar 

  41. Brilla CG, Weber KT. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res 1992;26:671–677.

    CAS  PubMed  Google Scholar 

  42. Brilla CG, Matsubara LS, Weber K. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Cardiol 1993;71:12A–16A.

    CAS  PubMed  Google Scholar 

  43. Lacolley P, Safar M, Lucet B, et al. Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J Am Coll Cardiol 2001;37:662–667.

    CAS  PubMed  Google Scholar 

  44. Rocha R, Williams GH. Rationale for the use of aldosterone antagonists in congestive heart failure. Drugs 2002;62:723–731.

    CAS  PubMed  Google Scholar 

  45. Rocha R, Martin-Berger CL, Yang P, et al. Selective aldosterone blockade prevents angiontensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002;143:4828–4836.

    CAS  PubMed  Google Scholar 

  46. Fletcher GF, Murphy P. Cardiac procedures in acute care situations. Med Clin North Am 1981;65:67–81.

    CAS  PubMed  Google Scholar 

  47. Ketelslegers J, Zannad F, Schriffrin E, et al. The effect of eplerenone on the cytokine osteopontin in post-MI heart failure: An EPHESUS substudy. Eur Heart J 2004;25:2912.

    Google Scholar 

  48. Wang D, Liu YH, Yan XP, et al. Role of a selective aldosterone blocker in mice with chronic heart failure following myocardial infarction. Circulation 2002;106:505.

    Google Scholar 

  49. Bauersachs J, Fraccarollo D, Schafer A, et al. Improvement fo ventricular remodeling in rats with CHF: Comparative and combined effect of aldosterone receptor blockade and angiotensin-converting enzyme inhibition. Eur Heart J 2002;23:401.

    Google Scholar 

  50. Suzuki G, Morita H, Mishima T, et al. Effects of long-term monotherapy with eplerenone a novel aldosterone blocker on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 2002;106:2967–2972.

    Article  CAS  PubMed  Google Scholar 

  51. Zannad F, Angiotensin-converting enzyme inhibitor and spironolactone combinaison therapy: New objectives in congestive heart failure treatment. Am J Cardiol 1993;71:34A–39A.

    CAS  PubMed  Google Scholar 

  52. Pitt B, Zannad F, Remme W, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–717.

    Article  CAS  PubMed  Google Scholar 

  53. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovascular Research 1997;35:30–34.

    CAS  PubMed  Google Scholar 

  54. Hayashi M, Takayoshi T, Wada A, et al. Immediate Administration of Mineralocorticoid Receptor Antagonist Spironolactone Prevents Post-Infarct Left Ventricular Remodeling Associated With Suppression of a Marker of Myocardial Collagen Synthesis in Patients With First Anterior Acute Myocardial Infarction. Circulation 2003;107:2559–2565.

    CAS  PubMed  Google Scholar 

  55. Pitt B, Remme WJ, Zannad F, et al. A clinical trial of eplerenone, a selective aldosterone blocker in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine 2003;348:1309–1321.

    CAS  PubMed  Google Scholar 

  56. Zannad F, Ketelslegers J, Schiffrin EL, et al. The effect of eplerenone on markers of cardiac fibrosis: Insights from EPHESUS. JACC 2004;200A.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zannad, F., Radauceanu, A. Effect of MR Blockade on Collagen Formation and Cardiovascular Disease with a Specific Emphasis on Heart Failure. Heart Fail Rev 10, 71–78 (2005). https://doi.org/10.1007/s10741-005-2351-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-005-2351-3

Key words

Navigation