Skip to main content
Log in

Numerical Simulation of Two-Dimensional Structure of Glow Discharge in View of the Heating of Neutral Gas

  • Plasma Investigations
  • Published:
High Temperature Aims and scope

Abstract

A two-dimensional computer model of glow discharge is given, which takes into account the heating of ambient gas and the external electric circuit. The structure of a glow discharge in molecular nitrogen is investigated numerically in the pressure range from 1 to 20 torr at an electric field intensity of up to 4 kV/cm. The regularities of heating a gas are investigated at different pressures and electric field intensities. It is demonstrated that, at a pressure p = 1 torr, a glow discharge burning in the mode of normal density of current assumes a toroidal shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Engel, A., Ionized Gases, Oxford: Clarendon, 1955. Translated under the title Ionizovannye gazy, Moscow: Fizmatgiz, 1959.

    Google Scholar 

  2. Brown, S.C., Basic Data of Plasma Physics, Cambridge, Mass.: MIT Press, 1959. Translated under the title Elementarnye protsessy v plazme gazovogo razryada, Moscow: Atomizdat, 1961.

    Google Scholar 

  3. Kaptsov, N.A., Elektricheskie yavleniya v gazakh i vakuume (Electric Phenomena in Gases and Vacuum), Moscow: Gostekhizdat, 1950.

    Google Scholar 

  4. Granovskii, V.L., Elektricheskii tok v gaze (ustanovivshiisya tok) (Electric Current in Gas (Steady-State Current)), Moscow: Nauka, 1971.

    Google Scholar 

  5. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1987.

    Google Scholar 

  6. Ward, A.L., Phys. Rev., 1958, vol. 112, no.6, p. 1852.

    Article  ADS  Google Scholar 

  7. Ward, A.L., J. Appl. Phys., 1962, vol. 33, no.9, p. 2789.

    Article  Google Scholar 

  8. Gladush, G.G. and Samokhin, A.A., Prikl. Mekh. Tekh. Fiz., 1981, no. 5, p. 15.

  9. Graves, D.B. and Jensen, K.E., IEEE Trans. Plasma Sci., 1986, vol. PS-14, no.2, p. 78.

    Google Scholar 

  10. Raizer, Yu.P. and Surzhikov, S.T., Teplofiz. Vys. Temp., 1988, vol. 25, no.3, p. 428.

    Google Scholar 

  11. Raizer, Yu.P. and Surzhikov, S.T., Teplofiz. Vys. Temp., 1990, vol. 27, no.3.

  12. Surzhikov, S.T. and Shang, J.S., J. Comput. Phys., 2004, vol. 199, p. 437.

    Article  ADS  Google Scholar 

  13. Galdush, G.G. and Samokhin, A.A., Calculation of a Two-Dimensional Glow Discharge in Molecular Gas, Preprint of Inst. of Atomic Energy, 1978, IAE-3062.

  14. Petrusev, A.S., Surzhikov, S.T., and Shang, J.S., Some Peculiarities of Direct Current Discharges for Aerospace Applications, AIAA 2005-5305, Toronto, 2005, p. 11.

  15. Lipatov, N.I., Mineev, A.P., Myshenkov, V.I., et al., Tr. Inst. Obshch. Fiz. Akad. Nauk SSSR, 1989, no. 17, p. 3.

  16. Artemov, V.I., Levitan, Yu.S., and Sinkevich, O.A., Neustoichivosti i turbulentnost' v nizkotemperaturnoi plazme (Instabilities and Turbulence in Low-Temperature Plasma), Moscow: Izd. MEI (Moscow Inst. of Power Engineering), 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teplofizika Vysokikh Temperatur, Vol. 43, No. 6, 2005, pp. 828–844.

Original Russian Text Copyright © 2005 by S. T. Surzhikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surzhikov, S.T. Numerical Simulation of Two-Dimensional Structure of Glow Discharge in View of the Heating of Neutral Gas. High Temp 43, 825–842 (2005). https://doi.org/10.1007/s10740-005-0130-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-005-0130-4

Keywords

Navigation