Skip to main content
Log in

Reduction of drag and energy consumption during energy release preceding a blunt body in supersonic flow

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A simple approximate theory is used to estimate the optimal power of a stationary lumped source of energy in a supersonic flow and its minimal distance from a body, which provide for a significant reduction of energy consumption required for the advance of the body. Similarity laws are formulated for the conversion of the numerical or experimental results to other conditions. Numerical simulation is performed of the incidence of hypersonic flow on a blunt body with and without energy release. The calculations are performed in application to the described new experiments in flow past a model and in measuring the drag in a hypersonic shock tunnel at Mach 10 in the presence or absence of a powerful arc source of energy. Descriptive patterns are given of flow and space distributions of gasdynamic quantities. The calculated shapes of waves agree well with schlieren photographs, and the calculated value of drag force — with the measured value. It is demonstrated numerically that, under close-to-optimal conditions, the drag may be reduced by a factor of approximately five, and the total energy consumption required to overcome this drag — by a factor of four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Oswatitsch, K., Propulsion with heating at Supersonic Speed, Report 90, Deutsche Versuchsanstalt for Luft- und Raumfahrt, 1959.

  2. Investigation of Gas Flows with Heat Input in the Vicinity of the External Surface of a Flying Vehicle, Obzor BNTI TsAGI (A Review by the Office of Scientific-and-Technical Information of Central Inst. of Aerohydrodynamics), 1971, no. 347.

  3. J.P. Reding D.M. Jesmen (1983) J. Spacecr. Rockets 20 IssueID3 452 Occurrence Handle1983JSpRo..20..452R

    ADS  Google Scholar 

  4. P.Yu. Georgievskii V.A. Levin (1987) Supersonic Flow past Volume Sources of Energy Release Mekhzanika. Sovremennye problemy Izd. MGU (Moscow State Univ.) Moscow 93

    Google Scholar 

  5. V.V. Vlasov V.G. Grudnitskii V.N. Rygalin (1995) Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza 2 142

    Google Scholar 

  6. L.N. Myrabo Yu. P. Raizer M.N. Shneider (1998) Teplofiz. Vys. Temp. 36 IssueID2 304

    Google Scholar 

  7. P.Yu. Georgievskii V.A. Levin (1998) Unsteady-State Effects in Supersonic Flow behind a Pulsating High-Power Source of Energy Proc. 9 th Int. Conf. on Methods in Aerophysical Research Izd. ITPM RAN (Inst. of Theoretical and Applied Mechanics, Russ. Acad. Sci. Novosibirsk 58

    Google Scholar 

  8. Levin, V.A. and Terent’eva, L.V., Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 1993, no. 2, p. 110.

  9. P.Yu. Georgievskii V.A. Levin (1993) Khim. Fiz. 10 IssueID12 1414

    Google Scholar 

  10. V.Yu. Borzov I.V. Rybka A.S. Yur’ev (1992) Inzh. Fiz. Zh. 63 IssueID6 659

    Google Scholar 

  11. D. Riggins H.F. Nelson E. Johnson (1999) AIAA J. 37 IssueID4 460 Occurrence Handle10.2514/2.756

    Article  Google Scholar 

  12. V.A. Levin V.B. Gromov N.E. Afonina (2000) Prikl. Mekh. Tekh. Fiz. 41 IssueID25 171 Occurrence Handle1074.80500

    MATH  Google Scholar 

  13. R. Takaki M.-S. Liou (2002) AIAA J. 40 IssueID3 501

    Google Scholar 

  14. P. Tretyakov A. Garanin V. Kraynev et al. (1996) Proc. 8 th Int. Conf. on Methods in Aerophysical Research Izd. ITPM RAN (Inst. of Theoretical and Applied Mechanics, Russ. Acad. Sci.) Novosibirsk 200

    Google Scholar 

  15. Knight, D., Kuchinskiy, V., Kuranov, A., and Sheikin, E., AIAA Paper 2003-0525, 2003.

  16. Myrabo, L.N. and Raizer, Yu.P., AIAA Paper 942551, 1994.

  17. S.W. Kandebo (1995) Aviat. Week Space Technol. 142 IssueID20 66

    Google Scholar 

  18. G.G. Chernyi (1957) Dokl. Akad. Nauk SSSR 112 213 Occurrence Handle87438

    MathSciNet  Google Scholar 

  19. Ya.B. Zel’dovich Yu.P. Raizer (1966) Fizika udarnylh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii Fizmatgiz Moscow

    Google Scholar 

  20. A. Safe (1965) New Investigations in the Field of Hypersonic Gas Flows Gazovaya dinamika kosmicheskikh apparatov Mir Moscow 184

    Google Scholar 

  21. Bracken, R.M., Myrabo, L.N., Nagamatsu, H.T., Meloney, E.D., and Schneider, M.N., AIAA Paper 2001–2734, 2001.

  22. Hartley, C.S., Portwood, T.W., Filipelli, M.V. et al., AIAA Paper 2004–0035, 2004.

  23. Girgis, I.G., Shneider, M.N., Macheret, S.O. et al., AIAA Paper 2002–0129, 2002.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teplofizika Vysokikh Temperatur, Vol. 42, No. 6, 2004, pp. 890–899.

Original Russian Text Copyright © 2004 by L. N. Myrabo, Yu. P. Raizer, M. N. Shneider, and R. Bracken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myrabo, L.N., Raizer, Y.P., Shneider, M.N. et al. Reduction of drag and energy consumption during energy release preceding a blunt body in supersonic flow. High Temp 42, 901–910 (2004). https://doi.org/10.1007/s10740-005-0035-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10740-005-0035-2

Keywords

Navigation