Skip to main content

Advertisement

Log in

Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Adverse environmental conditions, such as drought, high salinity and extreme temperature, severely affect the growth and productivity of crop plants. MADS-box transcription factors have been described to participate in stress responses. In our study, a MADS-box transcription factor gene, SlMBP8, has been cloned from tomato. The expression of SlMBP8 was induced by Methyl-jasmonic acid (MeJA), high salinity, high temperature, wounding and dehydration. Whereas, the transcript of SlMBP8 was down-regulated by Abscisic acid (ABA), 1-aminocyclopropane-1-carboxylic acid (ACC) and Indole-3-acetic acid (IAA). To further elucidate the function of SlMBP8 gene in response to abiotic stress, plants by knockdown of SlMBP8 through RNA interference (RNAi) were used for investigating the effect of drought and salt stresses on tomato seedlings of wild type (WT) and SlMBP8-RNAi lines. Seedling growth of SlMBP8-RNAi plants was less inhibited by salt than WT at post-germination stage. Transgenic plants became more tolerant to drought and salt stress than WT plants in soil, which was demonstrated by higher levels of chlorophyll and water contents, lower water loss rate and malondialdehyde (MDA) contents. In addition, the expression of multiple stresses related genes were significantly up-regulated in the RNAi lines under control and abiotic stresses. Taken together, these results suggest that SlMBP8 function as a negative stress-responsive transcription factor in the drought and high salinity stress signaling pathways, and may have promising applications in the engineering of drought- and salt-tolerant tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

GA3 :

Gibberellin acid

IAA:

Indole-3-acetic acid

MeJA:

Methyl-jasmonic acid

ORF:

Open reading frame

RNAi:

RNA interference

MDA:

Malondialdehyde

RWC:

Relative water content

RWL:

Rate of water loss

Chl:

Chlorophyll

MS:

Murashige and Skoog

ROS:

Reactive oxygen species

TFs:

Transcription factors

FW:

Fresh weights

DW:

Dry weights

SW:

Saturated weights

WT:

Wild-type

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, De Pouplana LR, Martinez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. Bmc Genomics 8(1):242

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedetti CE, Costa CL, Turcinelli SR, Arruda P (1998) Differential expression of a novel gene in response to coronatine, methyl jasmonate, and wounding in the Coi1 mutant of Arabidopsis. Plant Physiol 116:1037–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussink HJ, Oliver R (2001) Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. Eur J Biochem 268:15–24

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Hu Z, Grierson D (2008) Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. J Plant Physiol 165:662–670

    Article  CAS  PubMed  Google Scholar 

  • Cuartero J, Bolarin M, Asins M, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1058

    Article  CAS  PubMed  Google Scholar 

  • Dong TT, Hu ZL, Deng L, Wang Y, Zhu MK, Zhang JL, Chen GP (2013) A tomato MADS-Box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol 163:1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exposito-Rodriguez M, Borges AA, Borges-Perez A, Perez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. Bmc Plant Biol 8(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L-SP, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876

    Article  CAS  PubMed  Google Scholar 

  • Godoy JA, Pardo JM, Pintor-Toro JA (1990) A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15:695–705

    Article  CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Adak MS, Bagci EG, Cicek N, Eraslan F (2008) Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russ J Plant Physiol 55:59–67

    Article  CAS  Google Scholar 

  • Guo XH, Chen GP, Cui BL, Gao Q, Guo JE, Li AZ, Zhang LC, Hu ZL (2016) Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance. Mol Breeding 36(9):125

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hsieh TH, Li CW, SU RC, Cheng, Sanjaya CP, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh S (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5:159–163

    Google Scholar 

  • Kavi Kishor P, Zonglie H, Miao G-H, Hu C-A, Verma DPS (1995) Overexpression of ∆1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Article  Google Scholar 

  • Kavroulakis N, Papadopoulou KK, Ntougias S, Zervakis GI, Ehaliotis C (2006) Cytological and other aspects of pathogenesis-related gene expression in tomato plants grown on a suppressive compost. Ann Bot 98:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khong GN, Pati PK, Richaud F, Parizot B, Bidzinski P, Mai CD, BES M, Bourrie I, Meynard D, Beeckman T, Selvaraj MG, Manabu I, Genga AM, Brugidou C, DO VN, Guiderdoni E, Morel JB, Gantet P (2015) OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol 169:2935–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JT, Prasad V, Yang PT, Wu JF, David HO TH, Charng YY, Chan MT (2003) Expression of Arabidopsis CBF1 regulated by an ABA/stress inducible promoter in transgenic tomato confers stress tolerance without affecting yield. Plant Cell Environ 26:1181–1190

    Article  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005a) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005b) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Woo YM, Ryu SI, Shin YD, Kim WT, Park KY, Lee IJ, An G (2008) Further characterization of a rice AGL12 group MADS-box gene, OsMADS26. Plant Physiol 147:156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Seo YS, Coltrane D, Hwang S, OH T, Marcotte EM, Ronald PC (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci USA 108:18548–18553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JH, Sima W, Ouyang B, Wang TT, Ziaf K, Luo ZD, Liu LF, LI HX, Chen ML, Huang YQ, Feng YQ, Hao YH, Ye ZB (2012) Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J Exp Bot 63:6407–6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CJ, Kim WB, Lee B-S, Lee HY, Kwon T-H, Park JM, Kwon S-Y (2010) Silencing of SlFTR-c, the catalytic subunit of ferredoxin: thioredoxin reductase, induces pathogenesis-related genes and pathogen resistance in tomato plants. Biochem Biophys Res Commun 399:750–754

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Li Y, Ren J, Zhang C, Kong M, Song X, Zhou J, Hou X (2013a) Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis. Biol Plant 57:262–266

    Article  CAS  Google Scholar 

  • Liu Y, Wang L, Xing X, Sun LP, Pan JW, Kong XP, Zhang MY, Li DQ (2013b) ZmLEA3, a multifunctional group 3 LEA protein from maize (Zea mays L.), is Involved in biotic and abiotic stresses. Plant Cell Physiol 54:944–959

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Li Y, Chen A, Li L, Zuo J, Tian H, Luo Y, Zhu B (2013) LeERF1 improves tolerance to drought stress in tomato (Lycopersicon esculentum) and activates downstream stress-responsive genes. Afr J Biotechnol 9:6294–6300

    Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma NN, Zuo YQ, Liang XQ, Yin B, Wang GD, Meng QW (2013) The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plant 149:474–486

    Article  CAS  PubMed  Google Scholar 

  • Manavella PA, Dezar CA, Bonaventure G, Baldwin IT, Chan RL (2008) HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses. Plant J 56:376–388

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, LEE I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato: its identification and characterization. Mol Gen Genomics 279:171–182

    Article  CAS  Google Scholar 

  • Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz-Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33:2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Kumimoto RW, Wong BJ, Riechmann JL (2003) Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Plant Cell 15:1159–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    CAS  PubMed  Google Scholar 

  • Rijpkema AS, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10:32–38

    Article  CAS  PubMed  Google Scholar 

  • Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Chung MY, Hur Y, Cho YG, Watanabe M, Nou IS (2015) Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics 16(1):178

    Article  PubMed  PubMed Central  Google Scholar 

  • Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y (2013) Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol Biol 82:427–438

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183

    Article  CAS  Google Scholar 

  • Tardif G, Kane NA, Adam H, Labrie L, Major G, Gulick P, Sarhan F, Laliberte JF (2007) Interaction network of proteins associated with abiotic stress response and development in wheat. Plant Mol Biol 63:703–718

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang RZ, Li AL, Huo NX, Li S, Gu YQ, Vogel J, Jia JZ, Qi YJ, Mao L (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Liu DM, Guo JJ, Leseberg CH, Zhang XQ, Mao L (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. J Plant Physiol 170:424–431

    Article  CAS  PubMed  Google Scholar 

  • Xie QL, Hu ZL, Zhu ZG, Dong TT, Zhao ZP, Cui BL, Chen GP (2014) Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato. Sci Rep 4:4367

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahn LM, Feng BM, Ma H (2006) Beyond the ABC-model: regulation of floral homeotic genes. Adv Bot Res 44(44):163–207

    Article  CAS  Google Scholar 

  • Zegzouti H, Jones B, Marty C, Lelievre J-M, Latch A, Pech J-C, Bouzayen M (1997) ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: characterization and expression in response to drought, ABA and wounding. Plant Mol Biol 35:847–854

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang SX, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PBF (2012) Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol 80:571–585

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014a) The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep 33:1851–1863

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014b) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 31572129), and the Natural Science Foundation of Chongqing of China (cstc2015jcyjA80026), and the Fundamental Research Funds for the Central Universities (No. 106112015CDJZR235504).

Author contributions

GC and ZH designed and managed the research work and improved the manuscript. WY, JH, ZZ, XY and BC performed the experiments. WY wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1189 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Hu, Z., Hu, J. et al. Tomato (Solanum lycopersicum) MADS-box transcription factor SlMBP8 regulates drought, salt tolerance and stress-related genes. Plant Growth Regul 83, 55–68 (2017). https://doi.org/10.1007/s10725-017-0283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0283-2

Keywords

Navigation