Skip to main content
Log in

The influence of endophytic Penicillium oxalicum B4 on growth and artemisinin biosynthesis of in vitro propagated plantlets of Artemisia annua L.

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Artemisia annua L. is presently the sole natural source of antimalarial drug artemisinin. We established dual cultures of A. annua callus or regenerated plantlets with endophytic Penicillium oxalicum B4 to explore endophyte-mediated effects on artemisinin biosynthesis. Although A. annua callus could not produce artemisinin with or without the endophyte, simultaneous growth stimulation of the endophyte and inhibition of A. annua callus were observed in dual cultures. In an in vitro dual culture of endophyte-regenerated plantlets, the endophyte enhanced growth and artemisinin content of host plant. The endophyte could simultaneously induce oxidative stress in regenerated plantlets through the generation of reactive oxygen species (ROS) including O •−2 and H2O2, which was then accompanied by the activation of antioxidant enzymes such as peroxidase, catalase and superoxide dismutase during the later stages. There was a significant increase in amorphadiene synthase (ADS) and amorpha-4,11-diene monooxygenase (CYP71AV1) transcripts in dual culture of endophyte-plantlets. The induced ROS could modulate the expression of those key genes for artemisinin biosynthesis and might be responsible for conversion of artemisinin acid into artemisinin production. Our results demonstrated that endophytic P. oxalicum B4 could be applied as a promising means to enhance artemisinin production in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bisht SS, Sharma A, Chaturvedi K (1989) Certain metabolic lesions of chromium toxicity in radish. Indian J Agric Biochem 2:109–115

    CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown GD, Sy LK (2004) In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139–1159

    Article  CAS  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9

    Article  Google Scholar 

  • Choi PS, Min SR, Ko SM, Liu JR (2007) Somatic embryogenesis and plant regeneration in tissue cultures of Artemisia annua L. J Plant Biotechnol 34:197–200

    Article  Google Scholar 

  • Corsello MA, Garg NK (2015) Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep 32:359–366

    Article  CAS  PubMed  Google Scholar 

  • Dias MA, Costa MM (1983) Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leave. J Exp Bot 34:537–543

    Article  CAS  Google Scholar 

  • Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372

    Article  Google Scholar 

  • EI-Feraly FS, AI-Meshal IA, Alyahya MA, Hifnawy MS (1986) On the possible role of qinghao acid in the biosynthesis of artemisinin. Phytochemistry 25:2777–2778

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium-chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JFS, Janick J (1996) Roots as an enhancing factor for the production of artemisinin in shoot cultures of Artemisia annua. Plant Cell Tiss Org Cult 44:211–217

    Article  CAS  Google Scholar 

  • Gao FK, Yong YH, Dai CC (2011) Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plants Res 5:4418–4425

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Ge HM, Song YC, Ding H, Zhu HL, Zhao XA, Tan RX (2007) Cytotoxic benzo[j]fluoranthene metabolites from Hypoxylon truncatum IFB-18, an endophyte of Artemisia annua. J Nat Prod 70:114–117

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compante S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendry SJ, Boddy L, Lonsdale D (1993) Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytol 123:421–428

    Article  Google Scholar 

  • Jessing KK, Duke SO, Cedergreeen N (2014) Potential ecological roles of artemisinin produced by Artemisia annua L. J Chem Ecol 40:100–117

    Article  Google Scholar 

  • Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhao G-Z, Varma A, Qin S, Xiong Z et al (2012) An endophytic pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):e51410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Zou WX, Lu H, Tan RX (2001) Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi. J Biotechnol 88:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Clay K (1994) Differential growth of Aktinsonella species on host grass calli. Mycologia 86:667–673

    Article  Google Scholar 

  • Lu H, Zou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lydon J, Teasdale JR, Chen PK (1997) Allelopathic activity of annual wormwood (Artemisia annua) and the role of artemisinin. Weed Sci 45:807–811

    CAS  Google Scholar 

  • Malinowski D, Belesky DP (1999) Neotyphodium coenophialum-infection affects the ability of tall fescue to use sparingly available phosphorous. J Plant Nutrition 22:835–853

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nowak J, Asiedu SK, Bensalim S, Richards J, Stewart A, Smith C, Stevens D, Sturz AV (1998) From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tiss Org Cult 52:97–103

    Article  Google Scholar 

  • Pan WS, Zheng LP, Tian H, Li WY, Wang JW (2014) Transcriptome responses involved in artemisinin production in Artemisia annua L. under UV-B radiation. J Photochem Photobiol B Biol 140:292–300

    Article  CAS  Google Scholar 

  • Peters S, Draeger S, Aust H-J, Schulz B (1998) Interactions in dual cultures of endophytic fungi with host and nonhost plant calli. Mycologia 90:360–367

    Article  Google Scholar 

  • Ren CG, Dai CC (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biol 12:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycolog Res 109:661–686

    Article  Google Scholar 

  • Schulz B, Wangke U, Draeger S, Aust H-J (1993) Endophtyes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Sieber TN, Sieber-Canavesi F, Dorworth CE (1990) Simultaneous stimulation of endophytic Cryptodiaporthe hystrix and inhibition of Acer Macrophyllum callus in dual culture. Mycologia 82:569–575

    Article  Google Scholar 

  • Singh A, Vishwakarma RA, Husian A (1988) Evaluation of Artemisia annua strain for higher artemisinin production. Planta Med 54:275–277

    Google Scholar 

  • Strobel G, Yang XS, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440

    Article  CAS  PubMed  Google Scholar 

  • Subramanian P, Kim K, Ramasamy K, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332

    Article  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Eng Biotechnol 134:55–89

    CAS  PubMed  Google Scholar 

  • Wang JW, Zhang Z, Tan RX (2001) Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnol Lett 23:857–860

    Article  CAS  Google Scholar 

  • Wang JW, Xia ZH, Tan RX (2002) Elicitation on artemisinin biosynthesis in Artemisia annua hairy roots by the oligosaccharide extract from the endophytic Colletotrichum sp. B501. Acta Bot Sin 44:1233–1238

    CAS  Google Scholar 

  • Wang JW, Zheng LP, Tan RX (2006) The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L. Chinese J Biotechnol 22:829–834 (in Chinese)

    CAS  Google Scholar 

  • Wang JW, Zheng LP, Zhang B, Zou T (2009) Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl Microbiol Biotechnol 85:285–292

    Article  CAS  PubMed  Google Scholar 

  • Wang HL, Zheng JR, Ren XY, Yu T, Varma A, Lou BG, Zheng XD (2015) Effects of Piriformospora indica on the growth, fruit quality and interaction with tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regul 76:303–313

    Article  CAS  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol Plantarum 138:440–446

    Article  CAS  Google Scholar 

  • Woerdenbag HJ, Pras N, Nguyen GC, Bui TB, Rein B, van Uden W, Nguyen VB, Sieb B, Lugt CB (1994) Artemisinin, related sesquiterpenes, and essential oil in Artemisia annua during a vegetation period in Vietnam. Planta Med 60:272–275

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan YF, Dong T, Wang JW (2011) Effect of endophytic Penicillium sp. Y2 on growth and artemisin biosynthesis of plantlets in tissue cultures of Artemisia annua L. Amino Acids Biot Res 33:1–4 (in Chinese)

    CAS  Google Scholar 

  • Zhang YS, Ye HC, Liu BY, Wang H, Li GF (2005) Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants. Russ J Plant Physiol 52:58–62

    Article  CAS  Google Scholar 

  • Zhao SS, Zeng MY (1985) Spektrometrische hochdruck-flüssigkeits-chromatographische (HPLC) Untersuchungen zur Analytik von Qinghaosu. Planta Med 51:233–237

    Article  Google Scholar 

  • Zheng LP, Zhang B, Zou T, Chen ZH, Wang JW (2010) Nitric oxide interacts with reactive oxygen species to regulate oligosaccharide-induced artemisinin biosynthesis in Artemisia annua hairy roots. J Med Plants Res 4:758–765

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Graduate Program of Higher Education in Jiangsu Province (No. CXLX13-841), Suzhou Scholar Program (No. 14317363) and the projects sponsored by the NNSF (No. 81273487), PAPD and SRF for ROCS (No. K513201011) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wen Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L.P., Tian, H., Yuan, Y.F. et al. The influence of endophytic Penicillium oxalicum B4 on growth and artemisinin biosynthesis of in vitro propagated plantlets of Artemisia annua L.. Plant Growth Regul 80, 93–102 (2016). https://doi.org/10.1007/s10725-016-0162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0162-2

Keywords

Navigation