Skip to main content
Log in

Cloning, characterization and impact of up- and down-regulating subabul cinnamyl alcohol dehydrogenase (CAD) gene on plant growth and lignin profiles in transgenic tobacco

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Both cDNA including 5′UTR and 3′UTR and genomic clones of cinnamyl alcohol dehydrogenase (CAD) were isolated and characterized from a pulp-yielding leguminous tree Leucaena leucocephala (LlCAD1). The deduced amino acid sequence shared high identity with orthologous sequences of Acacia mangium × Acacia auriculiformis (83%), Medicago sativa (83%), Nicotiana tabaccum (83%) and Aralia cordata (81%). Full length cDNA contained 78 bases of 5′UTR and 283 bases of 3′UTR, while the genomic clone contained 5 exons and 4 introns. Western blot analysis revealed elevated expression of LlCAD1 in seedling roots and shoots compared to leaves. Sense and antisense CAD tobacco transgenics showed increased and reduced CAD activity accompanied by a change in monomeric lignin composition. Histochemical staining of lignin in down-regulated plants suggested an increase in aldehyde units and a decrease in S/G ratio. Down-regulation of CAD resulted in accumulation of syringic, ferulic, p-coumaric and sinapic acids compared to untransformed controls. These observations were validated by anatomical studies of down-regulated transgenic stems which showed thin walled, elongated phloem and xylem fibres, accompanied by a reduction in the density of vessel elements and amount of secondary xylem when compared to untransformed plants. Furthermore, Klason lignin analysis of CAD antisense transgenics showed 7–32% reduced lignin and normal phenotype as compared to untransformed plants. Such a reduction was not noticed in up-regulated transgenics. These results demonstrate a unique opportunity to explore the significant role that down-regulation of CAD gene plays in reducing lignin content thereby offering potential benefits to the pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    PubMed  CAS  Google Scholar 

  • Berlyn GP, Miksche JP, Sass JE (1976) Botanical microtechnique and cytochemistry. The Iowa State University Press, Ames

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breed 2:25–39

    Article  CAS  Google Scholar 

  • Boudet AM, Lapierre C, Grima-Pettenati J (1995) Biochemistry and molecular biology of lignification. New Phytol 129:203–236

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brill EM, Abrahams S, Hayes CM, Jenkins CL, Watson JM (1999) Molecular characterization and expression of a wound-induced cDNA encoding a novel cinnamoyl alcohol dehydrogenase enzyme in lucerne (Medicago sativa L.). Plant Mol Biol 41:279–291

    Article  PubMed  CAS  Google Scholar 

  • Bucholtz DL, Cantrell RP, Axtell JD, Lechtenberg VL (1980) Lignin biochemistry of normal and brown midrib mutant sorghum. J Agric Food Chem 28:1239

    Article  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition. Mechanism of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    PubMed  CAS  Google Scholar 

  • Chabannes M, Abdellah B, Catherine L (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  • Chabbert B, Tollier MT, Monties B (1993) Expression of brown midrib mutations on grass lignin. In: Proceedings of the 38th congress on lignin. Japan Wood Research Society, Kagawa, pp 33–36

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dean JFD, Eriksson KEL (1992) Biotechnological modifications of lignin structure and composition in forest trees. Holzforschung 46:135–147

    CAS  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length c DNA from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  • Galliano H, Heller W, Sandermann HJ (1993) Ozone induction and purification of spruce cinnamoyl alcohol dehydrogenase. Phytochemistry 32:557–563

    Article  CAS  Google Scholar 

  • Goffner D, Joffroy I, Grima-Pettenati J, Halpin C, Knight ME, Schuch W, Boudet AM (1992) Purification and characterization of isoforms of cinnamoyl alcohol dehydrogenase from Eucalyptus xylem. Planta 188:48–53

    Article  CAS  Google Scholar 

  • Grand C, Sarni F, Boudet AM (1985) Inhibition of cinnamyl alcohol dehydrogenase activity and lignin synthesis in poplar (Populus × euramericana Dode) tissues by two organic compounds. Planta 163:232–237

    Article  CAS  Google Scholar 

  • Grisebach H (1981) Lignins. In: Conn EE (ed) Secondary plant products (The Biochemistry of Plants, A Comprehensive Treatise), vol 7. Academic Press, New York, pp 457–478

    Google Scholar 

  • Halpin C, Knight ME, Geoffrey AF, Malcolm MC, Boudet AM, Boon JJ, Chabbert B, Marie-Thérèse T, Schuch W (1994) Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  • Hibino T, Keiji T, Tetsu K, Daisuke S, Takayoshi H (1995) Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci Biotechnol Biochem 59:929–931

    Article  CAS  Google Scholar 

  • Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp 141–160

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hu WJ, Popko JL, Lung JR (1998) Transgenic aspen trees with reduced lignin quantity and increased cellulose content (Abstract 011), presented at the Anslem Payen award symposium, 1998, Spring National American Chemical Society meeting, March 29–April 2, Dallas, Texas, USA

  • Iiyama K, Pant R (1988) The mechanism of the Maule colour reaction. Introduction of methylated syringyl nuclei into soft wood lignin. Wood Sci Technol 22:167–175

    Article  CAS  Google Scholar 

  • Jorgenson LR (1931) Brown mid rib in maize and its linkage relations. J Am Soc Agron 23:549–557

    Article  Google Scholar 

  • Jung HG, Weiting N (1998) Lignification of plant cell walls: impact of genetic manipulation. Proc Natl Acad Sci USA 95:12742–12743

    Google Scholar 

  • Kajita S, Katayama Y, Omori S (1996) Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarat: coenzyme A ligase. Plant Cell Physiol 117:761–770

    Google Scholar 

  • Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S (1997) Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-cumarate:coenzyme A ligase is depressed. Plant Physiol 114:871–879

    PubMed  CAS  Google Scholar 

  • Kim H, Ralph J, Yahiaoui N, Pean M, Boudet AM (2000) Cross-coupling of hydroxycinnamyl aldehydes into lignins. Org Lett 2:2197–2200

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis and biodegradation of cutin and suberin. Annu Rev Plant Physiol 32:539–567

    Article  CAS  Google Scholar 

  • Krik TK, Obst JR (1988) Lignin determination. Methods Enzymol 161:87–101

    Article  Google Scholar 

  • Kuc J, Nelson OE (1964) The abnormal lignins produced by the brown- mid rib mutants of maize. Arch Biochem Biophys 105:103–113

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Book  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  PubMed  CAS  Google Scholar 

  • Lynn DG, Chang M (1990) Phenolic signals in cohabitation: implication for plant development. Annu Rev Plant Physiol Plant Mol Biol 41:497–526

    Article  CAS  Google Scholar 

  • Mac Kay J, O’Malley D, Sederoff R (1995) A null mutation in CAD (cinnamyl alcohol dehydrogenase) and its effect in phenolic metabolism in pine. IUFRO, Ghent, pp 26–30

    Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Brigitte P, André DB, Busson R, Herdewijn P, Devreese B, Beeumen JV, Marita JM, Ralph J, Chen C, Burggraeve B, Van Montagu M, Messens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A D-methoxy transferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275:36899–36909

    Article  PubMed  CAS  Google Scholar 

  • O’Malley DM, Porter S, Sederoff RR (1992) Purification, characterization and cloning of cinnamyl alcohol dehydrogenase in loblolly pine (Pinus taeda L.). Plant Physiol 98:1364–1371

    Article  PubMed  Google Scholar 

  • Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Pillonel C, Mulder MM, Boon JJ, Forster B, Binder A (1991) Involvement of cinnamyl alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Planta 185:538–544

    Article  CAS  Google Scholar 

  • Pillonel C, Hunziker P, Binder A (1992) Multiple forms of the constitutive wheat cinnamyl alcohol dehydrogenase. J Exp Bot 43:299–305

    Article  CAS  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Prashant S, Sunita MSL, Pramod S, Gupta RK, Kumar SA, Karumanchi SR, Rawal SK, Kavi Kishor PB (2011) Down-regulation of Leucaena leucocephala cinnamoyl CoA reductase (LlCCR) gene induces significant changes in phenotype, soluble phenolic pools and lignin in transgenic tobacco. Plant Cell Rep 30:2215–2231. doi:10.1007/s00299-011-1127-6

    Google Scholar 

  • Ralph J, Hatfield RO, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnmylalcohol dehydrogenase and cinnamoyl Co-A reductase. Proc Natl Acad Sci USA 95:12803–12808

    Article  PubMed  CAS  Google Scholar 

  • Rao KS, Rajput KS (2001) Xylem structure and annual rhythm of development in the twigs of Acacia nilotica (L.) Del. growing in different forests of Gujarat state (India). Phyton 41:1–12

    Google Scholar 

  • Saka S (1991) Chemical composition and distribution. In: David N-SH, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker Inc., New York, pp 59–88

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schreiber L (1996) Chemical composition of casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199:596–601

    Article  CAS  Google Scholar 

  • Sekhar PN, Kumar RD, Sirisha VL, Prashant S, Kavi Kishor PB (2009) Phylogenetic analysis, homology modelling, molecular dynamics, docking and structure based designing new inhibitors against cinnamyl alcohol dehydrogenase (CAD) cloned and sequenced from a leguminous tree subabul (Leucaena leucocephala). OJB 11:103–124

    Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Speer EO (1987) A method of retaining phloroglucinol proof of lignin. Stain Technol 62:279–280

    PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (−) secoisolariciresinol and (−) matairesinol with Forsythia intermedia cell—free extracts. J Biol Chem 266:10210–10217

    PubMed  CAS  Google Scholar 

  • Van Blockland R, De Lange P, Mol JNM, Kooter JM (1993) Modulation of gene expression in plants by antisense genes. In: Lebleu B (ed) Antisense research and applications. CRC Press, Boca Raton, pp 125–148

    Google Scholar 

  • Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Leple J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inze D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid)-methyltransferase activity. Plant J 8:855–864

    Article  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdom`enech P (1995) The brown mid rib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid)-methyltransferase. Plant Cell 7:407–416

    Article  PubMed  CAS  Google Scholar 

  • Watson CF, Grierson R (1993) Antisense RNA in plants. In: Hiatt A (ed) Transgenic plants: fundamentals and applications. Marcel Dekker Inc., New York, pp 255–281

  • Wyrambik D, Grisebach H (1975) Purification and properties of isoenzymes of cinnamyl alcohol dehydrogenase from soybean cell suspension cultures. Eur J Biochem 59:9–15

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Marque C, Myton KE, Negrel J, Boudet AM (1998) Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta 204:8–15

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Council of Scientific and Industrial Research (CSIR-NMITLI), New Delhi, India and we gratefully acknowledge the financial assistance. We are also thankful to the UGC, New Delhi for financial assistance in the form of Centre for Advanced Studies to the Department of Genetics, and DBT-OU-ISLARE program to the Osmania University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Kavi Kishor.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirisha, V.L., Prashant, S., Ranadheer Kumar, D. et al. Cloning, characterization and impact of up- and down-regulating subabul cinnamyl alcohol dehydrogenase (CAD) gene on plant growth and lignin profiles in transgenic tobacco. Plant Growth Regul 66, 239–253 (2012). https://doi.org/10.1007/s10725-011-9647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-011-9647-1

Keywords

Navigation