Skip to main content
Log in

Partial nitrate nutrition amends photosynthetic characteristics in rice (Oryza sativa L. var. japonica) differing in nitrogen use efficiency

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Partial nitrate nutrition (PNN) was found to improve rice (Oryza sativa L. var. japonica) growth. However, how PNN is related to photosynthesis in rice cultivars with different nitrogen use efficiency (NUE) is still not clear. Two rice cultivars, Nanguang (high NUE) and Elio (low NUE), were grown under sole NH4 + and PNN at a total nitrogen concentration of 2.86 mM. The dry weight, leaf area, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and gas exchange parameters were measured. Nitrogen and Rubisco contents in the newly expanded leaves of cv. Nanguang were similar to those of cv. Elio when only NH4 + was supplemented in the nutrient solution. However, in cv. Nanguang, nitrogen and Rubisco contents increased under PNN than under sole NH4 + nutrition. Higher nitrogen and Rubisco contents were recorded in cv. Nanguang than in cv. Elio under PNN. The ratio of carboxylation efficiency (CE) to Rubisco content in cv. Nanguang was 11 and 14% higher than that in cv. Elio under NH4 + and PNN, respectively. CE was 14% higher in cv. Nanguang than that in cv. Elio. The results suggest that PNN causes an increase in photosynthesis in cv. Nanguang. It is concluded that differences in Rubisco activity, rather than stomatal limitation, are responsible for the differences in photosynthesis between the two cultivars. The presence of nitrate increases Rubisco content in rice with a high NUE, which leads to faster biomass accumulation at later growth stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

CO2 assimilation rate

A max :

Maximum photosynthetic rate

CE :

Carboxylation efficiency

C i :

Intercellular CO2 concentration

C o :

Ambient CO2 concentration

g s :

Stomatal conductance

g m :

Leaf mesophyll conductance

K C :

Michaelis–Menten constants for CO2

K O :

Michaelis–Menten constants for O2

l :

Stomatal limitation

NUE:

Nitrogen use efficiency

O:

Partial pressure of O2

PNN:

Partial nitrate nutrition

PPFD:

Photosynthetic photon flux density

Tr:

Transpiration rate

V cmax :

Maximum Rubisco carboxylation rate

α:

Apparent quantum yield

Γ* :

CO2 compensation point without dark respiration

References

  • Aalto T, Juurola E (2002) A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ 25:1399–1409. doi:10.1046/j.0016-8025.2002.00906.x

    Article  Google Scholar 

  • Berry JA, Downton WJS (1982) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis. Academic Press, New York, pp 263–343

    Google Scholar 

  • Briones AM Jr, Okabe S, Umemiya Y, Ramsing NB, Reichardt W, Okuyama H (2003) Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 250:335–348. doi:10.1023/A:1022897621223

    Article  CAS  Google Scholar 

  • Cheng LL, Fuchigami LH (2000) Rubisco activation state decreased with increasing nitrogen content in apple leaves. J Exp Bot 51:1687–1694. doi:10.1093/jexbot/51.351.1687

    Article  PubMed  CAS  Google Scholar 

  • Chu GX, Shen QR, Cao JL (2004) Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil 263:17–27. doi:10.1023/B:PLSO.0000047722.49160.9e

    Article  CAS  Google Scholar 

  • Claussen W, Lenz F (1999) Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant Soil 208:95–102. doi:10.1023/A:1004543128899

    Article  CAS  Google Scholar 

  • Cox WJ, Reisenauer HM (1973) Growth and ion uptake by wheat supplied nitrogen as nitrate, or ammonium, or both. Plant Soil 38:363–380. doi:10.1007/BF00779019

    Article  CAS  Google Scholar 

  • Duan YH, Zhang YL, Shen QR, Wang SW (2006) Nitrate effect on rice growth and nitrogen absorption and assimilation at different growth stages. Pedosphere 16:707–717

    Article  Google Scholar 

  • Duan YH, Zhang YL, Ye LT, Fan XR, Xu GH, Shen QR (2007) Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition. Ann Bot 99:1153–1160. doi:10.1093/aob/mcm051

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, Caemmerer SV (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346. doi:10.1104/pp.110.2.339

    PubMed  CAS  Google Scholar 

  • Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species. Planta 149:78–90. doi:10.1007/BF00386231

    Article  CAS  Google Scholar 

  • Feil B (1994) Growth and ammonium: nitrate uptake ratio of spring wheat cultivars under a homogeneous and a spatially separated supply of ammonium and nitrate. J Plant Nutr 17:717–728

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP, Horton P (1994) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta 192:211–220. doi:10.1007/BF00194455

    Article  CAS  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89. doi:10.1007/BF00336255

    Article  CAS  Google Scholar 

  • Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant Cell Environ 22:1177–1199. doi:10.1046/j.1365-3040.1999.00466.x

    Article  Google Scholar 

  • Guo S, Brüeck H, Sattelmacher B (2002) Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants. Plant Soil 239:267–275. doi:10.1023/A:1015014417018

    Article  CAS  Google Scholar 

  • Guo S, Schinner K, Sattelmacher B, Hansen UP (2005) Different apparent CO2 compensation points in nitrate and ammonium-grown Phaseolus vulgaris L. and the relationship to non-photorespiratory CO2 evolution. Physiol Plant 123:288–305. doi:10.1111/j.1399-3054.2005.00467.x

    Article  CAS  Google Scholar 

  • Guo SW, Zhou Y, Gao YX, Li Y, Shen QR (2007a) New insights into the nitrogen form effect on photosynthesis and photorespiration. Pedosphere 17:601–610

    Article  CAS  Google Scholar 

  • Guo SW, Chen G, Zhou Y, Shen QR (2007b) Ammonium nutrition increases photosynthesis rate under water stress at early development stage of rice (Oryza sativa L.). Plant Soil 296:115–124. doi:10.1007/s11104-007-9418-y

    Article  CAS  Google Scholar 

  • Guo S, Zhou Y, Shen Q, Zhang F (2007c) Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations. Plant Biol 9:21–29. doi:10.1055/s-2006-924541

    Article  PubMed  CAS  Google Scholar 

  • Heberer JA, Below FE (1989) Mixed nitrogen nutrition and productivity of wheat grown in hydroponics. Ann Bot 63:643–649.

    Google Scholar 

  • Høgh-Jensen H, Schjoerring JK (1997) Effects of drought and inorganic N form on nitrogen fixation and carbon isotope discrimination in Trifolium repens. Plant Physiol Biochem 35:55–62

    Google Scholar 

  • Kirk GJD (2001) Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants. Plant Soil 232:129–134. doi:10.1023/A:1010341116376

    Article  CAS  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. Ann Bot 96:639–646. doi:10.1093/aob/mci216

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate–ammonium synergism in rice. A subcellular flux analysis. Plant Physiol 119:1041–1046. doi:10.1104/pp.119.3.1041

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Glass ADM, Siddiqi MY, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476. doi:10.1046/j.1469-8137.2000.00606.x

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lasa B, Frechilla S, Aparicio-Tejo PM, Lamsfus C (2002) Alternative pathway respiration is associated with ammonium ion sensitivity in spinach and pea plants. Plant Growth Regul 37:49–55. doi:10.1023/A:1020312806239

    Article  CAS  Google Scholar 

  • Li YL, Zhang YL, Hu J, Shen QR (2007) Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Biol Fertil Soils 43:417–425. doi:10.1007/s00374-006-0119-0

    Article  CAS  Google Scholar 

  • Li Y, Gao Y, Xu X, Shen Q, Guo S (2009) Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. J Exp Bot 60:2351–2360. doi:10.1093/jxb/erp127

    Article  PubMed  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401. doi:10.1093/jxb/erg262

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JR, Wilcox GE (1984) Ammonium toxicity development in tomato plants relative to nitrogen form and light intensity. J Plant Nutr 7:1477–1496

    Article  CAS  Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40:999–1006

    CAS  Google Scholar 

  • Poorter H, Evans JR (1998) Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116:26–37. doi:10.1007/s004420050560

    Article  Google Scholar 

  • Qian XQ, Shen QR, Xu GH, Wang JJ, Zhou MY (2004) Nitrogen form effects on yield and nitrogen uptake of rice crop grown in aerobic soil. J Plant Nutr 27:1061–1076

    Article  CAS  Google Scholar 

  • Raab TK, Terry N (1994) Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiol 105:1159–1166. doi:10.1104/pp.105.4.1179

    PubMed  CAS  Google Scholar 

  • Raman DR, Spanswick RM, Walker LP (1995) The kinetics of nitrate uptake from flowing nutrient solutions by rice: influence of pretreatment and light. Bioresour Technol 53:125–132

    Article  CAS  Google Scholar 

  • Seel WE, Parsons AN, Press MC (1993) Do inorganic solutes limit growth of the facultative hemiparasite Rhinanthus minor L. in the absence of a host? New Phytol 124:283–289. doi:10.1111/j.1469-8137.1993.tb03818.x

    Article  CAS  Google Scholar 

  • Walch-Liu P, Neumann G, Bangerth F, Engels C (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot 51:227–237. doi:10.1093/jexbot/51.343.227

    Article  PubMed  CAS  Google Scholar 

  • Zhang YL, Duan YH, Shen QR (2004) Screening of physiological indices for response of rice to nitrate. Acta Pedol Sinica 41:571–576

    Google Scholar 

  • Zhang YL, Fan JB, Wang DS, Shen QR (2009) Genotypic differences in grain yield and physiological nitrogen use efficiency among rice cultivars. Pedosphere 19:681–691

    Article  CAS  Google Scholar 

  • Zhu Z, Gerendás J, Bendixen R, Schinner K, Tabrizi H, Sattelmacher B, Hansen U-P (2000) Different tolerance to light stress in NO3 and NH4 + -grown Phaseolus vulgaris L. Plant Biol 2:558–570. doi:10.1055/s-2000-7498

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shiwei Guo and Dr. Yong Li for helpful comments on an earlier version of the manuscript. We thank Prof. Kafakfi form the Hebrew University of Jerusalem for correct reading of this paper. This work was supported by the National Nature Science Foundation of China (No. 30771290), by the Ministry of Science and Technology of China (No. 2005CB120903) and by State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science (Y052010013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lv, H., Wang, D. et al. Partial nitrate nutrition amends photosynthetic characteristics in rice (Oryza sativa L. var. japonica) differing in nitrogen use efficiency. Plant Growth Regul 63, 235–242 (2011). https://doi.org/10.1007/s10725-010-9520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9520-7

Keywords

Navigation