Skip to main content
Log in

Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

All applied metals (Co, Al, Cu, Cd) and NaCl inhibited barley root growth. No root growth inhibition was caused by drought exposure, in contrast to cold treatment. 0.01 mM H2O2 stimulated root growth and GA application did not affect root growth at all. Other activators and inhibitors of H2O2 production (SHAM, DTT, 10 mM H2O2, 2,4-D) inhibited root growth. Loss of cell viability was most significant after Al treatment, followed by Cd and Cu, but no cell death was induced by Co. Drought led to slight increase in Evans blue uptake, whereas neither NaCl nor cold influenced this parameter. DTT treatment caused slight increase in Evans blue uptake and significant increases were detected after 2,4-D and 10 mM H2O2 treatment, but were not induced by others stressors. Metal exposure increased guaiacol-POD activity, which was correlated with oxidation of NADH and production of H2O2. Exposure to drought caused a minor change in NADH oxidation, but neither H2O2 production nor guaiacol-POD activity was increased. Cold and NaCl application decreased all monitored activities. Increase in NADH oxidation and guaiacol-POD activity was caused by 10 mM H2O2 and 0.01 mM 2,4-D treatment, which also caused enhancement of H2O2 production. Slight inhibition of all activities was caused by 0.01 mM H2O2, GA, DTT; more pronounced inhibition was detected after SHAM treatment. The role of H2O2 production mediated by POD activity in relation to root growth and cell viability under exposure to some abiotic stress factors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

AOS:

active oxygen species

DTT:

dithiotreitol

GA:

gibberellic acid

POD:

peroxidase

SHAM:

salicylhydroxamic acid

References

  • P. Askerlund C. Larsson S. Widell I.M. Moller (1987) ArticleTitleNAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences Physiol. Plant. 71 9–19 Occurrence Handle1:CAS:528:DyaL1cXhtVymtLo%3D

    CAS  Google Scholar 

  • C.J. Baker N.M. Mock (1994) ArticleTitleAn improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue Plant Cell Tissue Organ Cult. 39 7–12

    Google Scholar 

  • G.P. Bolwell L.V. Bindschedler K.A. Blee V.S. Butt D.R. Davies S.L. Gardner C. Gerrish F. Minibayeva (2002) ArticleTitleThe apoplastic oxidative burst in response to biotic stress in plants: a three-component system J. Exp. Bot. 53 IssueID372 1367–1376 Occurrence Handle11997382 Occurrence Handle1:CAS:528:DC%2BD38XktFSlsL0%3D

    PubMed  CAS  Google Scholar 

  • G.P. Bolwell P. Wojtaszek (1997) ArticleTitleMechanisms for the generation of reactive oxygen species in plant defence – a broad perspective Physiol Mol. Plant Pathol. 51 347–366 Occurrence Handle1:CAS:528:DyaK1cXjsVSgurg%3D

    CAS  Google Scholar 

  • M. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 248–254 Occurrence Handle10.1006/abio.1976.9999 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    Article  CAS  PubMed  Google Scholar 

  • J. Dat S. Vandenabeele E. Vranová M. Van Montagu D. Inzé F. Van Bresugem (2000) ArticleTitleDual action of the active oxygen species during plant stress response Cell Mol. Life Sci. 57 779–795 Occurrence Handle10892343 Occurrence Handle1:CAS:528:DC%2BD3cXksFyisrk%3D

    PubMed  CAS  Google Scholar 

  • A. de Marco K.A. Roubelakis-Angelakis (1996) ArticleTitleThe complexity of enzymatic control of hydrogen peroxide concentration may affect the regeneration potential of plant protoplast Plant Physiol. 110 137–145 Occurrence Handle12226176 Occurrence Handle1:CAS:528:DyaK28XltFGmsg%3D%3D

    PubMed  CAS  Google Scholar 

  • B. Chance A.C. Maehly (1995) Assay of catalases and peroxidases S.P. Colowick N.O. Kaplan (Eds) Methods in Enzymology, Vol. 2 Academic Press New York, NY 764–775

    Google Scholar 

  • B. Ezaki R.C. Gardner Y. Ezaki H. Matsumoto (2000) ArticleTitleExpression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress Plant Physiol. 122 657–665 Occurrence Handle10712528 Occurrence Handle1:CAS:528:DC%2BD3cXktFSqsLc%3D

    PubMed  CAS  Google Scholar 

  • G. Frahry P. Schopfer (1998) ArticleTitleHydrogen peroxide production by roots and its stimulation by exogenous NADH Physiol. Plant. 103 395–404 Occurrence Handle1:CAS:528:DyaK1cXlsFags70%3D

    CAS  Google Scholar 

  • S.C. Fry (1986) ArticleTitleCross-linking of matrix polymers in the growing cells of angiosperms Annu. Rev. Plant Physiol. 37 165–186 Occurrence Handle1:CAS:528:DyaL28XkslKjtrs%3D

    CAS  Google Scholar 

  • A.W. Girotti (1985) ArticleTitleMechanisms of lipid peroxidation J. Free Rad. Biol. Med. 1 87–95 Occurrence Handle1:CAS:528:DyaL2MXlsFGrtLc%3D

    CAS  Google Scholar 

  • L.F. González M.C. Rojas (1999) ArticleTitleRole of wall peroxidases in oat growth inhibition by DIMBOA Phytochemistry 50 931–937

    Google Scholar 

  • G.G. Gross C. Janse E.F. Elstner (1977) ArticleTitleInvolvement of malatemonophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.) Planta 136 271–276 Occurrence Handle1:CAS:528:DyaE2sXlvFGltr4%3D

    CAS  Google Scholar 

  • K. Grossmann J. Kwiatkowski S. Tresch (2001) ArticleTitleAuxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.) J. Exp. Bot. 52 IssueID362 1811–1816 Occurrence Handle11520869 Occurrence Handle1:CAS:528:DC%2BD3MXms12ks7o%3D

    PubMed  CAS  Google Scholar 

  • A. Hegedüs S. Erdei G. Horváth (2001) ArticleTitleComparative studies of H2O2 detoxifying enzymes in green and greening barleym seedlings under cadmium stress Plant Sci. 160 1085–1093 Occurrence Handle11337065

    PubMed  Google Scholar 

  • A. Ishida K. Ookubo K. Ono (1987) ArticleTitleFormation of hydrogen peroxide by NAD(P)H oxidation with isolated cell wall-associated peroxidase from cultured liverwort cells, Marchantia polymorpha L Plant Cell Physiol. 28 723–726 Occurrence Handle1:CAS:528:DyaL2sXkslCgtL8%3D

    CAS  Google Scholar 

  • A. Kärkönen S. Koutaniemi M. Mustonen K. Syrjänen G. Brunow I. Kilpeläinen T.H. Teeri L.K. Simola (2002) ArticleTitleLignification related enzymes in Picea abies suspension cultures Physiol. Plant. 114 343–353 Occurrence Handle12060256

    PubMed  Google Scholar 

  • M. Katsuhara (1997) ArticleTitleApoptosis-like cell death in barley roots under salt stress Plant Cell Physiol. 38 IssueID9 1091–1093 Occurrence Handle1:CAS:528:DyaK2sXmtlykurg%3D

    CAS  Google Scholar 

  • L.M. Lagrimini V. Gingas F. Finger S. Rothstein T.Y. Liu (1997) ArticleTitleCharacterization of antisense transformed plants deficient in the tobacco anionic peroxidase Plant Physiol. 114 1187–1196 Occurrence Handle12223765 Occurrence Handle1:CAS:528:DyaK2sXlsleis7c%3D

    PubMed  CAS  Google Scholar 

  • C.C. Lin C.H. Kao (2001) ArticleTitleCell wall peroxidase against ferulic acidlignin, and NaCl-reduced root growth of rice seedlings J. Plant Physiol. 158 667–671 Occurrence Handle1:CAS:528:DC%2BD3MXks1Git7w%3D

    CAS  Google Scholar 

  • C.C. Lin C.H. Kao (2002) ArticleTitleOsmotic stress-induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings Plant Growth Regul. 37 177–184 Occurrence Handle1:CAS:528:DC%2BD38XnsFylsb0%3D

    CAS  Google Scholar 

  • A. Liszkay B. Kenk P. Schopfer (2003) ArticleTitleEvidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth Planta 217 658–667 Occurrence Handle12739149 Occurrence Handle1:CAS:528:DC%2BD3sXmtVWgs74%3D

    PubMed  CAS  Google Scholar 

  • Y. Morohashi (2002) ArticleTitlePeroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion J. Exp. Bot. 53 1643–1650 Occurrence Handle12096103 Occurrence Handle1:CAS:528:DC%2BD38XlsFSmsbk%3D

    PubMed  CAS  Google Scholar 

  • S.J. Neill R. Desikan A. Clarke R.D. Hurst J.T. Hancock (2002) ArticleTitleHydrogen peroxide and nitric oxide as signalling molecules in plants J. Exp. Bot. 53 1237–1247 Occurrence Handle11997372 Occurrence Handle1:CAS:528:DC%2BD38XktFSls70%3D

    PubMed  CAS  Google Scholar 

  • K.D. Richards E.J. Schott Y.K. Sharma K.R. Davis R.C. Gardner (1998) ArticleTitleAluminum induces oxidative stress genes in Arabidopsis thaliana Plant Physiol. 116 409–418 Occurrence Handle9449849 Occurrence Handle1:CAS:528:DyaK1cXkslGitw%3D%3D

    PubMed  CAS  Google Scholar 

  • H. Saruyama M. Tanida (1995) ArticleTitleEffect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.) Plant Sci. 109 105–113 Occurrence Handle1:CAS:528:DyaK2MXntl2ks70%3D

    CAS  Google Scholar 

  • J.R Shinkle S.J. Swoap P. Simon R.L. Jones (1992) ArticleTitleCell wall free space of Cucumis hypocotyls contains NAD and a blue light-regulated peroxidase activity Plant Physiol. 98 1336–1341 Occurrence Handle10.1104/pp.98.4.1336 Occurrence Handle16668797 Occurrence Handle1:CAS:528:DyaK38XisFahsLw%3D

    Article  PubMed  CAS  Google Scholar 

  • M. Šimonovičová J. Huttová I. Mistrík B. Široká L. Tamás (2004) ArticleTitleRoot growth inhibition by aluminum is probably caused by cell death due to peroxidase-mediated hydrogen peroxide production. Protoplasma 224 91–98 Occurrence Handle15726813

    PubMed  Google Scholar 

  • L. Tamás J. Huttová I. Mistrík (2003) ArticleTitleInhibition of Al-induced root elongation and enhancement of Al-induced peroxidase in Al-sensitive and Al-resistant barley cultivars are positively correlated Plant Soil 250 193–200

    Google Scholar 

  • L. Tamás M. Šimonovičová J. Huttová I. Mistrík (2004) ArticleTitleAluminium stimulated hydrogen peroxide production of germinating barley seeds Environ. Exp. Bot. 51 281–288

    Google Scholar 

  • R.K. Tewari P. Kumar P.N. Sharma S.S. Bisht (2002) ArticleTitleModulation of oxidative stress responsive enzymes by excess cobalt Plant Sci. 162 381–388 Occurrence Handle1:CAS:528:DC%2BD38Xht1aitb8%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Šimonovičová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šimonovičová, M., Huttová, J., Mistrík, I. et al. Peroxidase mediated hydrogen peroxide production in barley roots grown under stress conditions. Plant Growth Regul 44, 267–275 (2004). https://doi.org/10.1007/s10725-004-4662-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-004-4662-0

Keywords

Navigation