Skip to main content
Log in

Comprehensive analysis of the COBRA-like (COBL) gene family through whole-genome analysis of land plants

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

COBRA-like genes play important roles in oriented cell division, cell expansion, cell wall biosynthesis, defense response, and tip-directed growth in root hair development in plants. However, despite the increasing availability of plant genomic data, there is limited understanding of the systemic evolutionary analysis and gene characterization of this family. This study aims to investigate the number and structure of the COBRA gene family in land plants, representing major evolutionary nodes, through genome data mining. The representative plants analyzed in this study include Arabidopsis thaliana, Arabidopsis lyrate, Carica papaya, Populus trichocarpa, Medicago truncatula, Glycine max, Ricinus communis, Manihot esculenta, Cucumis sativus, Vitis vinifera, Sorghum bicolor, Zea mays, Oryza sativa, Brachypodium distachyon, Mimulus guttatus, Selaginella moellendorffii, and Phycomitrella patens. A total of 180 COBRA proteins were analyzed from these representative plants. By comparing protein and gene structures, combined with phylogenetic analysis, syntenic research, and expression pattern analysis, this study provides novel insights into the origin and divergence of COBRA genes. Furthermore, this study reveals the evolutionary relationships of COBRA genes among land plant species and offers essential theoretical foundations and gene resources for improving crop quality through genetic modification mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Appella E, Weber IT, Blasi F (1988) Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 231:1–4

    Article  CAS  PubMed  Google Scholar 

  • Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, Elbaum R, de Souza A, Pauly M, Kieber JJ, Harpaz-Saad S (2015) COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiol 167:711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    Article  CAS  PubMed  Google Scholar 

  • Berardini BZ, Reiser L, Li D (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Song S, Dhugga KS, Rafalski JA, Benfey PN (2007a) Combining expression and comparative evolutionary analysis: The COBRA Gene Family. Plant Physiol 143:172–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, Howard RJ, Rafalski A (2006) Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224:1174–1184

    Article  CAS  PubMed  Google Scholar 

  • Csürös M, Holey JA, Rogozin IB (2007) In search of lost introns. Bioinformatics 23:87–96

    Article  Google Scholar 

  • Csürös M, Rogozin IB, Koonin EV (2008) Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol Biol Evol 25:903–911

    Article  PubMed  Google Scholar 

  • Doolittle R, Fei Feng D, Johnson M (1984) Computer-based characterization of epidermal growth factor precursor. Nature 307:558–560

    Article  CAS  PubMed  Google Scholar 

  • Eisenhaber B, Bork P, Eisenhaber F (1998) Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng Des Sel 11:1155–1161

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, Von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Goldman N, Yang ZH (1994) Codon-based model of nucleotide substitution for protein-coding dna-sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hochholdinger F, Wen TJ, Zimmermann R, Chimot‐Marolle P, Da Costa e Silva O, Bruce W, Lamkey KR, Wienand U, Schnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI‐anchored, monocot‐specific, COBRA‐like protein that significantly affects grain yield. Plant J 54:888–898

  • Jones DT, Taylor WR, Thornton JM (1994) A mutation data matrix for transmembrane proteins. FEBS Lett 339:269–275

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle R (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M (2003) BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants. Plant Cell 15:2020–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Shang-Guan K, Zhang B, Liu X, Yan M, Zhang L, Shi Y, Zhang M, Qian Q, Li J, Zhou Y (2013) Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils. PLoS Genet 9:1003704

    Article  Google Scholar 

  • Lynch M (2002) Intron evolution as a population-genetic process. Proc Natl Acad Sci USA 99:6118–6123

    Article  Google Scholar 

  • Lynch M (2011) The lower bound to the evolution of mutation rates. Genome Biol Evol 3:1107–1118

    Article  PubMed  PubMed Central  Google Scholar 

  • McVean G, Charlesworth B (1999) A population genetic model for the evolution of synonymous codon usage: Patterns and predictions. Genetics Research 74:145–158

    Article  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  Google Scholar 

  • Roudier F, Schindelman G, DeSalle R, Benfey PN (2002) The COBRA family of putative GPI-anchored proteins in Arabidopsis. a new fellowship in expansion. Plant Physiol 130:538–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P, McCann MC, Benfey PN (2001) COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev 15:1115–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker RC, Polzin KAYLA, Labate J, Specht JAMES, Brummer EC, Olson TERRY, Young NEVIN, Concibido V, Wilcox J, Tamulonis JP, Kochert G (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics 144:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G (2007) Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol 145:1444–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steel M (1994) Recovering a tree from the leaf colourations it generates under a Markov model. Appl Math Lett 7:19–23

    Article  Google Scholar 

  • Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M (2012) Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci USA 109:18488–18492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivers R, Burt A, Palestis BG (2004) B chromosomes and genome size in flowering plants. Genome 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov AE (2001) Mirrored genome size distributions in monocot and dicot plants. Acta Biotheor 49:43–51

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Kang BG, Osburn LD, Cheng ZM (2009) The COBRA gene family in populus and gene expression in vegetative organs and in response to hormones and environmental stresses. Plant Growth Regul 58:211–223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Researchers Supporting Project number (RSPD2023R728), King Saud University, Riyadh, Saudi Arabia.

Funding

Authors are thankful to the Researchers Supporting Project number (RSPD2023R728), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. A, conducted the experimental work, performed the whole-genome analysis, and led the manuscript. A.S.A. and F.A.N. contributed to analysis gene expression data, and S.A.A contributed to editing, proofreading, and table arrangements and analysis.

Corresponding author

Correspondence to Mohammad Z. Ahmed.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.Z., Alqahtani, A.S., Nasr, F.A. et al. Comprehensive analysis of the COBRA-like (COBL) gene family through whole-genome analysis of land plants. Genet Resour Crop Evol 71, 863–872 (2024). https://doi.org/10.1007/s10722-023-01667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01667-9

Keywords