Skip to main content
Log in

Genetic diversity and relationships in Corchorus olitorius (Malvaceae s.l.) inferred from molecular and morphological data

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

In this study, we investigated the genetic diversity and relationships in C. olitorius by analysing populations representing different distribution areas, and developed a hypothesis on the origin and spread of the species in the pantropics. We employed amplified fragment lengths polymorphism (AFLP) and morphometric analyses in a total of 101 C. olitorius accessions. Results of both data sets are mostly congruent. The molecular analysis indicated generally low genetic diversity within populations and the Nei’s gene diversity (He) ranged from 0.0457 to 0.0955 with a mean of 0.0763. Qualitative traits, especially related to leaf morphology, branching habit and stipule color were the taxonomically most informative characters. The highest morphological variability occurred within African accessions, indicating that this species originally evolved in Africa. In both analyses, the Asian materials were nested within African populations, especially with those from North and East Africa. This indicates an African origin of the species and we hypothesise that dispersal occurred via the Mediterranean–Indian trade routes instead of natural migration along the coasts from western Africa to the Indian subcontinent. Both analyses revealed materials from Ethiopia to be quite distinct. The highest number of private bands (N = 35), percent polymorphism (29.29%), and gene diversity (0.0955) were also detected in wild accessions collected from Ethiopia, suggesting a long-term spatial isolation of C. olitorius populations in the country. Germplasm samples from this region could therefore be a useful source of genetic variation in jute breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H (1999) Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem 47:3963–3966

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Ghosh M, Mayer R, Powell W, Basak SL, Sen SK (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678–685

    Article  CAS  Google Scholar 

  • Bayer C, Kubitzki K (2003) Malvaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol. 5, Malvales, Capparales and non-betalain Caryophyllales. Springer, Berlin, pp 225–311

    Google Scholar 

  • Benor S, Blattner FR, Demissew S, Hammer K (2010) Collection and ethnobotanical investigation of Corchorus species in Ethiopia: potential leafy vegetables for dry regions. Genet Resour Crop Evol 57:293–306

    Article  Google Scholar 

  • Benor S, Fuchs J, Blattner FR (2011) Genome size variation in Corchorus olitorius (Malvaceae s.l.) and correlation with elevation and phenotypic traits. Genome 54:578–585

    Article  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Chae SS, Warde WD (2006) Effect of using principal coordinates and principal components on retrieval of clusters. Comput Stat Data Anal 50:1407–1417

    Article  Google Scholar 

  • Dansi A, Adjatin A, Adoukonou-Sagbadja H, Falad’e V, Yedomonhan H, Odou D, Dossou B (2008) Traditional leafy vegetables and their use in the Benin Republic. Genet Res Crop Evol 55:1239–1256

    Article  Google Scholar 

  • Edmonds JM (1990) Herbarium survey of African Corchorus L. species. Systematic and Ecogeographic Studies on Crop Genepools 4. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falush DM, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Gao HS, Williamson S, Bustamante CD (2007) A Markov Chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  PubMed  Google Scholar 

  • Gould SJ, Johnston RF (1972) Geographic variation. Ann Rev Ecol 3:457–498

    Article  Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871

    Article  Google Scholar 

  • Grubben GJH, Denton OA (2004) Plant resources of tropical Africa 2. Vegetables. PROTA Foundation, Wageningen, CTA

    Google Scholar 

  • Heywood VH (1993) Flowering plants of the world. Oxford University Press, New York

    Google Scholar 

  • Khan MSY, Bano S, Javed K, Mueed MA (2006) A comprehensive review on the chemistry and pharmacology of Corchorus species: a source of cardiac glycosides, triterpenoids, ionones, flavonoids, coumarins, steroids and some other compounds. J Sci Ind Res India 65:283–298

    CAS  Google Scholar 

  • Kinabo J, Mnkeni AP, Nyaruhucha CNM, Msuya J, Haug A, Ishengoma J (2006) Feeding frequency and nutrient content of foods commonly consumed in the Iringa and Morogoro regions in Tanzania. Int J Food Sci Nutr 57:9–17

    Article  PubMed  CAS  Google Scholar 

  • Kovach WL (2005) MVSP: a multivariate statistical package for Windows, ver. 3.13q. Kovach Computing Services, Pentraeth, Wales, UK

    Google Scholar 

  • Krebs G (2001) Tiliaceae. In: Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops. Volume 3. Angiospermae-Dicotyledones: Malpighiaceae-Oleaceae. Springer, Berlin, pp 1560–1567

  • Kundu BC (1951) Origin of jute. Indian J Genet Plant Breed 11:95–99

    Google Scholar 

  • Kundu BC (1956) Jute—World’s most important bast fibre. Econ Bot 10:103–133

    Article  Google Scholar 

  • Lim TM, Khoo HW (1985) Sampling properties of Gower’s general coefficient of similarity. Ecology 66:1682–1685

    Article  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Palit P, Sasmal BC, Bhattacharryya AC (1996) Germplasm diversity and estimate of genetic advance of four morpho-physiological traits in a world collection of jute. Euphytica 90:89–110

    Google Scholar 

  • Palve SM, Sinha MK (2005) Genetic variation and interrelationships among fibre yield attributes in secondary gene pool of Corchorus spp. SABRO J Breed Genet 37:1–11

    Google Scholar 

  • Peakal R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetics software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pleines T, Blattner FR (2008) Phylogeographic implications of an AFLP phylogeny of the American diploid Hordeum species (Poaceae: Triticeae). Taxon 57:875–881

    Google Scholar 

  • Potokina E, Blattner FR, Alexandrova T, Bachmann K (2002) AFLP diversity in the common vetch (Vicia sativa L.) on the world scale. Theor Appl Genet 105:58–67

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Qi J, Zhou D, Wu W, Lin L, Wu J, Fang P (2003a) Application of ISSR technology in genetic diversity detection of jute. Ying Yong Sheng Tai Xue Bao 14:1473–1477

    PubMed  CAS  Google Scholar 

  • Qi J, Zhou D, Wu W, Lin L, Fang P, Wu J (2003b) The application of RAPD technology in genetic diversity detection of jute. Yi Chuan Xue Bao 30:926–932

    PubMed  CAS  Google Scholar 

  • Roy A, Bandyopadhyay A, Mahaptra AK, Ghosh SK, Singh NK, Bansal KC, Koundal KR, Mohapatra T (2006) Evaluation of genetic diversity in jute (Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292–297

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods), ver. 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • The Natural History Museum (2007) Jute. Retrieved on March 2008 from http://www.nhm.ac.uk/jdsml/nature-online/seeds-of-trade/

  • Thorpe RS (1976) Biometric analysis of geographic variation and racial affinities. Biol Rev 51:407–452

    Article  PubMed  CAS  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company, Reading, Mass

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Westphal-Stevels JMC (1986) Local vegetables in Cameroon: Corchorus species used as a vegetable. Acta Horticult 182:423–425

    Google Scholar 

  • Wild H (1984) Corchorus. In: Leistner OA (ed) Flora of Southern Africa 21 (1: Tiliaceae). Department of Agriculture, Botanical Research Institute, Pretoria, pp 32–42

    Google Scholar 

  • Yeh FC, Young RC, Boyle T (1999) POPGENE, Microsoft Windows-based freeware for population genetics analysis. Molecular Biology and Biotechnology Center, University of Alberta, Alberta

    Google Scholar 

  • Yuan QJ, Zhang ZY, Hu J, Guo LP, Shao AJ, Huang LQ (2010) Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genetics 11:29

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

S.B. acknowledges support by the German Academic Exchange Service (DAAD). Seed samples of germplasm accessions for the present study were kindly provided by the University of Basel (Switzerland), University of Duisburg (Germany), University of Mainz (Germany), University of Göttingen (Germany), University of Giessen (Germany), University of Padua (Italy), World Vegetable Center (Taiwan, Tanzania), Royal Botanic Gardens Kew (UK), N.I. Vavilov Institute of Plant Industry (Russia), and the USDA-ARS (USA). We thank Petra Oswald, Christina Koch and Jürgen Marlow for the help in the AFLP and greenhouse studies. We are very grateful to the Institute of Biodiversity Conservation (IBC) and Department of Biology of the Addis Ababa University for the help provided in the process of germplasm export.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Benor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benor, S., Demissew, S., Hammer, K. et al. Genetic diversity and relationships in Corchorus olitorius (Malvaceae s.l.) inferred from molecular and morphological data. Genet Resour Crop Evol 59, 1125–1146 (2012). https://doi.org/10.1007/s10722-011-9748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9748-8

Keywords

Navigation