Skip to main content
Log in

Allozyme Diversity and Population Structure of Caragana korshinskyi Kom.in China

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Caragana korshinskyi Kom. is a long-lived shrub species indigenous to northwestern China, and important in vegetation rehabilitation of widely degraded and degrading semiarid and arid regions because of its high ecological and economic values. Information at molecular level on its genetic diversity, however, is not available. Accordingly, the extent and distribution for genetic diversity and population structure in 11 populations of C. korshinskyi were assessed using polyacrylamide gel electrophoresis for seven enzymes including aminopeptidase, aspartate aminotransferase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, phosphoglucoisomerase, phosphogluconate dehydrogenase, and peroxidase. The seven-enzyme systems produced 11 loci encompassing 19 alleles demonstrating high genetic variation at both species and population levels. A considerable excess of heterozygotes relative to Hardy–Weinberg expectations was detected at the both levels as well. GST ranged from 0.0074 for AMP-1 to 0.4646 for PGD with a mean of 0.1517, indicating that approximately 84.8% of the total allozyme variation occurred within populations. An indirect estimate of the number of migrants per generation indicated that gene flow was high among populations of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brown A.H.D. (1979). Enzyme polymorphism in plant populations. Theor. Popul. Biol. 15: 1–42

    Article  Google Scholar 

  • Bretting P.K. and Widrlechner M.P. (1995). Genetic markers and horticultural germplasm management. Hort. Sci. 29: 1337–4339

    Google Scholar 

  • Cao W.H. and Zhang X.Y. (1991). Acta Bot. Sin. 33: 181–187

    Google Scholar 

  • Chang C.Y. and Zhang M.L. (1997). Anatomical structures of young stems and leaves of some Caragana species with their ecological adaptabilities. Bull. Bot. Res. 17: 65–71

    Google Scholar 

  • Fu H.C. 1989. Caragana. In: Fu H.C.(eds) Flora Intramongolica, 2nd.: Inner Mongolia, People Press, Huhhot, pp. 236–238.

  • Gottieb L.D. (1981). Electrophorestic evidence and plant populations. In: Reinhold, L., Harborne, T.B. and Swain, T. (eds) Phytochemistry, pp 1–46. Oxford University Press Inc., Pergamon

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. (1989). Allozyme diversity in plant species. In: Brown, A.D.H., Clegg, M.T., Kahler, A.L. and Weir, B.S. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp 304–319. Sinauer Press, Sunderland, MA

    Google Scholar 

  • Hamrick J.L., Godt M.J.W. and Sherman-Broyles S.L. (1992). Factors influencing levels of genetic diversity in woody plant species. New. For. 6: 95–124

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. (1997). Allozyme diversity in cultivated crops. Crop Sci. 37: 26–30

    Article  CAS  Google Scholar 

  • Hanelt P. and Institute of Plant Genetics and Crop Plant Research. 2001. Mansfelds Encyclopedia of Agricultural and Horticultural Crops. Springer-Verlag, Berlin etc.

  • Huh M.K. (1999). Genetic diversity and population structure of Korean alder (Alnus japonica: Betulaceae). Can. J. For. Res. 29: 1311–1316

    Article  Google Scholar 

  • Ledig F.T. (1986). Hetrizygosity, heterosis and fitness in outbreeding plants. In: Soule, M.E. (eds) Conservation Biology, pp 77–104. Sinauer Press, Sunderland, MA

    Google Scholar 

  • Li C.C. and Horvitz D.G. (1953). Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 5: 107–117

    CAS  PubMed  Google Scholar 

  • Li S.B., Wang B., Bai Y.Q. and Wang L. (2000). Studies on the characteristics of the main forage shrub species in Yanchi sandy land. Sci. Sil. Sin. 36: 119–125

    Google Scholar 

  • Loveless M.D. and Hamrick J.L. (1984). Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–95

    Article  Google Scholar 

  • Ma C.C., Gao Y.B. and Guo H.Y. (2003a). Interspecific transition among Caragana microphylla C. davazamcii C. korshinskyi along geographic gradient. Characteristics of photosynthesis and water metabolism Acta Bot. Sin. 45: 1228–1237

    Google Scholar 

  • Ma C.C., Gao Y.B. and Liu H.F. (2003b). Interspecific transition among Caragana microphylla C. davazamcii C. korshinskyi along geographic gradient. Ecological and RAPD evidence Acta Bot. Sin. 45: 1218–1227

    Google Scholar 

  • Ma C.C., Gao Y.B. and Wang J.L. (2004a). Ecological adaptation of Caragana opulens on the Inner Mongolia plateau: photosynthesis and water metabolism. Acta Phytoecol. Sin. 28: 305–311

    Google Scholar 

  • Ma C.C., Gao Y.B. and Wang J.L. (2004b). Acta Ecol. Sin. 24: 1594–1601

    Google Scholar 

  • Markert C.L. (1975). Isozymes IV: Genetics and Evolution. Academic Press, New York, USA

    Google Scholar 

  • Moore R.J. (1962). J. Arnold Arboretum 43: 203–214

    Google Scholar 

  • Nei M. (1972). Genetic distance between populations. Am. Nat. 106: 282–292

    Article  Google Scholar 

  • Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    CAS  PubMed  Google Scholar 

  • Qiu J. and Sun J.T. (2003). A study on pollen morphology of Caragana Fabr. and its taxonomic significance. J. Shangdong. Norm. Univ. 18: 85–87

    Google Scholar 

  • Rohlf F.J. 1993. Numerical Taxonomy and Multivariate Analysis System.Version 1.8. Exter SoftwareSetauket, New York.

  • Smouse P.E., Long J.C. and Sokal R.R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35: 627–632

    Article  Google Scholar 

  • Soltis D.E., Haufler C.H. and Darrow D.C. (1983). Starch gel electrophoresis of fern: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73: 9–27

    Article  Google Scholar 

  • Wang X.M. and Gao Z.Y. (2003). Study on process technology and its key technique of wood based panels from desert shrubs. Chin Wood Industry 17: 11–13

    CAS  Google Scholar 

  • Wang H.X., Hu Z.A. and Zhong M. (1994a). Morphological variation of Caragana populations in the Maowusu sandy grassland. Acta Ecol. Sin. 14: 366–371

    Google Scholar 

  • Wang H.X., Hu Z.A. and Zhong M. (1994b). Seed protein variation of Caragana populations in the Maowusu sandy grassland. Acta Ecol. Sin. 14: 372–380

    Google Scholar 

  • Wang H.X., Hu Z.A., Zhong M. and Wei W. (1997). Ecological genetics of Caragana ssp.. In: Hu, Z.A. and Zhang, Y.P. (eds) Genetics Diversity of Animals and Plants in China, pp 160–163. Zhejiang Science and Technology Press, Hangzhou

    Google Scholar 

  • Wendel J.F. and Weeden N.F. (1989). Visualization and interpretation of plant isozyme. In: Soltis, D.E. and Soltis, P.S. (eds) Isozyme in Plant Biology, pp 42–72. Dioscorides Press, PortlandOR

    Google Scholar 

  • Wei W. 1997. Studies on molecular ecology of populations of leguminous, Caragana spp. and Glycine soja. Ph.D. Thesis, Institute of Botany, Chinese Academy of ScienceBeijing, China.

  • Wei W., Wang H.X. and Hu Z.A. (1999). Primary studies on molecular ecology of Caragana spp. populations distributed over Maowusu sandy grassland: from RAPD data. Acta Ecol. Sin. 19: 16–22

    Google Scholar 

  • Wright S. (1965). The interpretation of population structure by F-statistics with species regard to systems of mating. Evolution 19: 395–420

    Article  Google Scholar 

  • Xiao C.W. and Zhou G.S. (2001). Effect of simulated precipitation change on growthgas exchange and chlorophyll fluorescence of Caragana intermedia in Maowusu sandland. Chin. J. Appl. Ecol. 12: 692–696

    CAS  Google Scholar 

  • Yan L., Li H. and Liu Y. (2002). J. Arid. Land Res. Environ. 16: 100–106

    Google Scholar 

  • Yang T.X. and Wu Y.W. (1999). Application of electrophoresis in agricultural science. In: He, Z.X. and Wu, Y.W. (eds) Electrophoresis, pp 258–312. Science Press, Beijing

    Google Scholar 

  • Yeh F.C., Yang R.C. and Boyle T. 1999. POPGENE VERSION 1.32. Microsoft Windows-based Freeware for Population Genetic Analysis. Quick User Guide. Center for International Forestry ResearchUniversity of Alberta.

  • Zhang X.S. (1994). Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecol. Sin. 18: 1–16

    Article  Google Scholar 

  • Zhou Y.G. 1997. Genetic analysis of seed protein, isozyme and population genetic structure in NingTiao (Caragana spp.). M.S. Thesis, Institute of Botany, Chinese Academy of ScienceBeijing, China.

  • Zhou Y.G., Wang H.X. and Hu Z.A. (2000). Seed protein polymorphism within individual plants and mating system. Acta Bot. Sin. 42: 910–912

    CAS  Google Scholar 

  • Zhou Y., Wang H.X. and Hu Z.A. (2001). Variation of breeding systems in populations of Caragana intermedia in Maowusu sandy grassland. Acta Bot. Sin. 43: 1307–1309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Gao, H., Han, J. et al. Allozyme Diversity and Population Structure of Caragana korshinskyi Kom.in China. Genet Resour Crop Evol 53, 1689–1697 (2006). https://doi.org/10.1007/s10722-005-1214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-005-1214-z

Key words

Navigation