Skip to main content
Log in

Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The two mammalian α2,8-polysialyltransferases (polyST’s), ST8Sia II (STX) and ST8Sia IV (PST), catalyze synthesis of the α2-8-linked polysialic acid (polySia) glycans on neural cell adhesion molecules (NCAMs). The objective of this study was to clone the coding sequence of the piglet ST8Sia II and determine the mRNA expression levels of ST8Sia II, ST8Sia IV, NCAM and neuropilin-2 (NRP-2), also a carrier protein of polySia, during postnatal development. The amino acid sequence deduced from the coding sequence of ST8Sia II was compared with seven other mammalian species. Piglet ST8Sia II was highly conserved and shared 67.8 % sequence identity with ST8Sia IV. Genes coding for ST8Sia II and IV were differentially expressed and distinctly different in neural and non-neural tissues at postnatal days 3 and 38. Unexpectedly, the cellular levels of mRNA coding for ST8Sia II and IV showed no correlation with the posttranslational level of polySia glycans in different tissues. In contrast, mRNA abundance coding for NCAM and neuropilin-2 correlated with expression of ST8Sia II and IV. These findings show that the cellular abundance of ST8Sia II and IV in postnatal piglets is regulated at the level of translation/posttranslation, and not at the level of transcription, a finding that has not been previously reported. These studies further highlight differences in the molecular mechanisms controlling polysialylation in adult rodents and neonatal piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Varki, A., Schauer, R.: Sialic Acids. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of Glycobiology. Cold Spring Harbor (NY) (2009)

  2. Wang, B.: Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29, 177–222 (2009). doi:10.1146/annurev.nutr.28.061807.155515

    Article  PubMed  Google Scholar 

  3. Troy 2nd, F.A.: Polysialylation: from bacteria to brains. Glycobiology 2(1), 5–23 (1992)

    Article  CAS  PubMed  Google Scholar 

  4. Nakata, D., Zhang, L., Troy 2nd, F.A.: Molecular basis for polysialylation: a novel polybasic polysialyltransferase domain (PSTD) of 32 amino acids unique to the alpha 2,8-polysialyltransferases is essential for polysialylation. Glycoconj. J. 23(5–6), 423–436 (2006). doi:10.1007/s10719-006-6356-5

    Article  CAS  PubMed  Google Scholar 

  5. Rutishauser, U.: Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat. Rev. Neurosci. 9(1), 26–35 (2008). doi:10.1038/nrn2285

    Article  CAS  PubMed  Google Scholar 

  6. Nakata, D., Troy 2nd, F.A.: Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules (N-CAMS): development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS. J. Biol. Chem. 280(46), 38305–38316 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Yang, P., Yin, X., Rutishauser, U.: Intercellular space is affected by the polysialic acid content of NCAM. J. Cell Biol. 116(6), 1487–1496 (1992)

    Article  CAS  PubMed  Google Scholar 

  8. Drake, P.M., Nathan, J.K., Stock, C.M., Chang, P.V., Muench, M.O., Nakata, D., Reader, J.R., Gip, P., Golden, K.P., Weinhold, B., Gerardy-Schahn, R., Troy 2nd, F.A., Bertozzi, C.R.: Polysialic acid, a glycan with highly restricted expression, is found on human and murine leukocytes and modulates immune responses. J. Immunol. 181(10), 6850–6858 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hoffman, S., Edelman, G.M.: Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc. Natl. Acad. Sci. U. S. A. 80(18), 5762–5766 (1983)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zuber, C., Lackie, P.M., Catterall, W.A., Roth, J.: Polysialic acid is associated with sodium channels and the neural cell adhesion molecule N-CAM in adult rat brain. J. Biol. Chem. 267(14), 9965–9971 (1992)

    CAS  PubMed  Google Scholar 

  11. Curreli, S., Arany, Z., Gerardy-Schahn, R., Mann, D., Stamatos, N.M.: Polysialylated neuropilin-2 is expressed on the surface of human dendritic cells and modulates dendritic cell-T lymphocyte interactions. J. Biol. Chem. 282(42), 30346–30356 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Yabe, U., Sato, C., Matsuda, T., Kitajima, K.: Polysialic acid in human milk. CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J. Biol. Chem. 278(16), 13875–13880 (2003). doi:10.1074/jbc.M300458200

    Article  CAS  PubMed  Google Scholar 

  13. Galuska, S.P., Rollenhagen, M., Kaup, M., Eggers, K., Oltmann-Norden, I., Schiff, M., Hartmann, M., Weinhold, B., Hildebrandt, H., Geyer, R., Muhlenhoff, M., Geyer, H.: Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc. Natl. Acad. Sci. U. S. A. 107(22), 10250–10255 (2010). doi:10.1073/pnas.0912103107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Muhlenhoff, M., Rollenhagen, M., Werneburg, S., Gerardy-Schahn, R., Hildebrandt, H.: Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem. Res. 38(6), 1134–1143 (2013). doi:10.1007/s11064-013-0979-2

    Article  PubMed  Google Scholar 

  15. Rollenhagen, M., Buettner, F.F., Reismann, M., Jirmo, A.C., Grove, M., Behrens, G.M., Gerardy-Schahn, R., Hanisch, F.G., Muhlenhoff, M.: Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. J. Biol. Chem. 288(32), 22880–22892 (2013). doi:10.1074/jbc.M113.463927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Park, K.H., Yeo, S.W., Troy 2nd, F.A.: Expression of polysialylated neural cell adhesion molecules on adult stem cells after neuronal differentiation of inner ear spiral ganglion neurons. Biochem. Biophys. Res. Commun. (2014). doi:10.1016/j.bbrc.2014.05.035

    PubMed Central  Google Scholar 

  17. Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G., Goridis, C.: Adult and embryonic mouse neural cell adhesion molecules have different binding properties. Nature 304(5924), 347–349 (1983)

    Article  CAS  PubMed  Google Scholar 

  18. Doherty, P., Cohen, J., Walsh, F.S.: Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 5(2), 209–219 (1990)

    Article  CAS  PubMed  Google Scholar 

  19. Tang, J., Rutishauser, U., Landmesser, L.: Polysialic acid regulates growth cone behavior during sorting of motor axons in the plexus region. Neuron 13(2), 405–414 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Muller, D., Wang, C., Skibo, G., Toni, N., Cremer, H., Calaora, V., Rougon, G., Kiss, J.Z.: PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17(3), 413–422 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. Hildebrandt, H., Dityatev, A.: Polysialic acid in brain development and synaptic plasticity. Top. Curr. Chem. (2013). doi:10.1007/128_2013_446

    Google Scholar 

  22. Cremer, H., Lange, R., Christoph, A., Plomann, M., Vopper, G., Roes, J., Brown, R., Baldwin, S., Kraemer, P., Scheff, S., et al.: Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367(6462), 455–459 (1994). doi:10.1038/367455a0

    Article  CAS  PubMed  Google Scholar 

  23. Tomasiewicz, H., Ono, K., Yee, D., Thompson, C., Goridis, C., Rutishauser, U., Magnuson, T.: Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11(6), 1163–1174 (1993)

    Article  CAS  PubMed  Google Scholar 

  24. Angata, K., Nakayama, J., Fredette, B., Chong, K., Ranscht, B., Fukuda, M.: Human STX polysialyltransferase forms the embryonic form of the neural cell adhesion molecule. Tissue-specific expression, neurite outgrowth, and chromosomal localization in comparison with another polysialyltransferase, PST. J. Biol. Chem. 272(11), 7182–7190 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Hildebrandt, H., Becker, C., Murau, M., Gerardy-Schahn, R., Rahmann, H.: Heterogeneous expression of the polysialyltransferases ST8Sia II and ST8Sia IV during postnatal rat brain development. J. Neurochem. 71(6), 2339–2348 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Ong, E., Nakayama, J., Angata, K., Reyes, L., Katsuyama, T., Arai, Y., Fukuda, M.: Developmental regulation of polysialic acid synthesis in mouse directed by two polysialyltransferases PST and STX. Glycobiology 8(4), 415–424 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Sawaguchi, A., Idate, Y., Ide, S., Kawano, J., Nagaike, R., Oinuma, T., Suganuma, T.: Multistratified expression of polysialic acid and its relationship to VAChT-containing neurons in the inner plexiform layer of adult rat retina. J. Histochem. Cytochem. 47(7), 919–928 (1999)

    Article  CAS  PubMed  Google Scholar 

  28. Sevigny, M.B., Ye, J., Kitazume-Kawaguchi, S., Troy 2nd, F.A.: Developmental expression and characterization of the alpha2,8-polysialyltransferase activity in embryonic chick brain. Glycobiology 8(9), 857–867 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. Kanato, Y., Kitajima, K., Sato, C.: Direct binding of polysialic acid to a brain-derived neurotrophic factor depends on the degree of polymerization. Glycobiology 18(12), 1044–1053 (2008). doi:10.1093/glycob/cwn084

    Article  CAS  PubMed  Google Scholar 

  30. Kanato, Y., Ono, S., Kitajima, K., Sato, C.: Complex formation of a brain-derived neurotrophic factor and glycosaminoglycans. Biosci. Biotechnol. Biochem. 73(12), 2735–2741 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. Sato, C., Yamakawa, N., Kitajima, K.: Measurement of glycan-based interactions by frontal affinity chromatography and surface plasmon resonance. Methods Enzymol. 478, 219–232 (2010). doi:10.1016/S0076-6879(10)78010-1

    Article  CAS  PubMed  Google Scholar 

  32. Ono, S., Hane, M., Kitajima, K., Sato, C.: Novel regulation of fibroblast growth factor 2 (FGF2)-mediated cell growth by polysialic acid. J. Biol. Chem. 287(6), 3710–3722 (2012). doi:10.1074/jbc.M111.276618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Isomura, R., Kitajima, K., Sato, C.: Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J. Biol. Chem. 286(24), 21535–21545 (2011). doi:10.1074/jbc.M111.221143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sato, C., Kitajima, K.: Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J. Biochem. 154(2), 115–136 (2013). doi:10.1093/jb/mvt057

    Article  CAS  PubMed  Google Scholar 

  35. Oltmann-Norden, I., Galuska, S.P., Hildebrandt, H., Geyer, R., Gerardy-Schahn, R., Geyer, H., Muhlenhoff, M.: Impact of the polysialyltransferases ST8SiaII and ST8SiaIV on polysialic acid synthesis during postnatal mouse brain development. J. Biol. Chem. 283(3), 1463–1471 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. Avril, T., North, S.J., Haslam, S.M., Willison, H.J., Crocker, P.R.: Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J. Leukoc. Biol. 80(4), 787–796 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Nicoll, G., Avril, T., Lock, K., Furukawa, K., Bovin, N., Crocker, P.R.: Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol. 33(6), 1642–1648 (2003). doi:10.1002/eji.200323693

    Article  CAS  PubMed  Google Scholar 

  38. Sato, C., Fukuoka, H., Ohta, K., Matsuda, T., Koshino, R., Kobayashi, K., Troy 2nd, F.A., Kitajima, K.: Frequent occurrence of pre-existing alpha 2-8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J. Biol. Chem. 275(20), 15422–15431 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. Kojima, N., Kurosawa, N., Nishi, T., Hanai, N., Tsuji, S.: Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro2a cells. J. Biol. Chem. 269(48), 30451–30456 (1994)

    CAS  PubMed  Google Scholar 

  40. Okada, M., Itoh Mi, M., Haraguchi, M., Okajima, T., Inoue, M., Oishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S.: b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J. Biol. Chem. 277(3), 1633–1636 (2002). doi:10.1074/jbc.C100395200

    Article  CAS  PubMed  Google Scholar 

  41. Susuki, K., Baba, H., Tohyama, K., Kanai, K., Kuwabara, S., Hirata, K., Furukawa, K., Rasband, M.N., Yuki, N.: Gangliosides contribute to stability of paranodal junctions and ion channel clusters in myelinated nerve fibers. Glia 55(7), 746–757 (2007). doi:10.1002/glia.20503

    Article  PubMed  Google Scholar 

  42. Eckhardt, M., Muhlenhoff, M., Bethe, A., Koopman, J., Frosch, M., Gerardy-Schahn, R.: Molecular characterization of eukaryotic polysialyltransferase-1. Nature 373(6516), 715–718 (1995). doi:10.1038/373715a0

    Article  CAS  PubMed  Google Scholar 

  43. Nakayama, J., Fukuda, M.N., Fredette, B., Ranscht, B., Fukuda, M.: Expression cloning of a human polysialyltransferase that forms the polysialylated neural cell adhesion molecule present in embryonic brain. Proc. Natl. Acad. Sci. U. S. A. 92(15), 7031–7035 (1995)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Muhlenhoff, M., Manegold, A., Windfuhr, M., Gotza, B., Gerardy-Schahn, R.: The impact of N-glycosylation on the functions of polysialyltransferases. J. Biol. Chem. 276(36), 34066–34073 (2001). doi:10.1074/jbc.M101022200

    Article  CAS  PubMed  Google Scholar 

  45. Angata, K., Suzuki, M., Fukuda, M.: ST8Sia II and ST8Sia IV polysialyltransferases exhibit marked differences in utilizing various acceptors containing oligosialic acid and short polysialic acid. The basis for cooperative polysialylation by two enzymes. J. Biol. Chem. 277(39), 36808–36817 (2002). doi:10.1074/jbc.M204632200M204632200

    Article  CAS  PubMed  Google Scholar 

  46. Harduin-Lepers, A., Mollicone, R., Delannoy, P., Oriol, R.: The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15(8), 805–817 (2005). doi:10.1093/glycob/cwi063

    Article  CAS  PubMed  Google Scholar 

  47. Takashima, S.: Characterization of mouse sialyltransferase genes: their evolution and diversity. Biosci. Biotechnol. Biochem. 72(5), 1155–1167 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. Yang, C., Zhu, X., Liu, N., Chen, Y., Gan, H., Troy 2nd, F.A., Wang, B.: Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets. J. Nutr. Biochem. (2014). doi:10.1016/j.jnutbio.2014.03.015

    Google Scholar 

  49. Moughan, P.J., Birtles, M.J., Cranwell, P.D., Smith, W.C., Pedraza, M.: The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev. Nutr. Diet. 67, 40–113 (1992)

    Article  CAS  PubMed  Google Scholar 

  50. Wang, B., Yu, B., Karim, M., Hu, H., Sun, Y., McGreevy, P., Petocz, P., Held, S., Brand-Miller, J.: Dietary sialic acid supplementation improves learning and memory in piglets. Am. J. Clin. Nutr. 85(2), 561–569 (2007)

    CAS  PubMed  Google Scholar 

  51. Wang, B., Hu, H., Yu, B.: Molecular characterization of pig ST8Sia IV--a critical gene for the formation of neural cell adhesion molecule and its response to sialic acid supplement in piglets. Nutr. Neurosci. 9(3–4), 147–154 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. Katoh, K., Toh, H.: Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9(4), 286–298 (2008). doi:10.1093/bib/bbn013bbn013

    Article  CAS  PubMed  Google Scholar 

  53. Nygard, A.B., Jorgensen, C.B., Cirera, S., Fredholm, M.: Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8, 67 (2007). doi:10.1186/1471-2199-8-67

    Article  PubMed Central  PubMed  Google Scholar 

  54. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., Speleman, F.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7), RESEARCH0034 (2002).

  55. Zapater, J.L., Colley, K.J.: Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. J. Biol. Chem. 287(9), 6441–6453 (2012). doi:10.1074/jbc.M111.322024M111.322024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., Selbach, M.: Global quantification of mammalian gene expression control. Nature 473(7347), 337–342 (2011). doi:10.1038/nature10098nature10098

    Article  PubMed  Google Scholar 

  57. Edelman, G.M., Chuong, C.M.: Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc. Natl. Acad. Sci. U. S. A. 79(22), 7036–7040 (1982)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rothbard, J.B., Brackenbury, R., Cunningham, B.A., Edelman, G.M.: Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J. Biol. Chem. 257(18), 11064–11069 (1982)

    CAS  PubMed  Google Scholar 

  59. Rey-Gallardo, A., Delgado-Martin, C., Gerardy-Schahn, R., Rodriguez-Fernandez, J.L., Vega, M.A.: Polysialic acid is required for neuropilin-2a/b-mediated control of CCL21-driven chemotaxis of mature dendritic cells and for their migration in vivo. Glycobiology 21(5), 655–662 (2011). doi:10.1093/glycob/cwq216cwq216

    Article  CAS  PubMed  Google Scholar 

  60. Pellet-Many, C., Frankel, P., Jia, H., Zachary, I.: Neuropilins: structure, function and role in disease. Biochem. J. 411(2), 211–226 (2008). doi:10.1042/BJ20071639BJ20071639

    Article  CAS  PubMed  Google Scholar 

  61. Parker, M.W., Guo, H.F., Li, X., Linkugel, A.D., Vander Kooi, C.W.: Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 51(47), 9437–9446 (2012). doi:10.1021/bi3012143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Angata, K., Long, J.M., Bukalo, O., Lee, W., Dityatev, A., Wynshaw-Boris, A., Schachner, M., Fukuda, M., Marth, J.D.: Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem. 279(31), 32603–32613 (2004). doi:10.1074/jbc.M40342920M403429200

    Article  CAS  PubMed  Google Scholar 

  63. Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H., Dityatev, A.: Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20(14), 5234–5244 (2000)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of Prof. Zuguo Liu, Dean, Xiamen University School of Medicine.

Funding

This study was funded by research grants from the Xiamen University School of Medicine, Xiamen City, China. Partial support was also received from a Mizutani Glycoscience Foundation Research Grant to FAT II (#130097).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frederic A. Troy II or Bing Wang.

Additional information

Frederic A. Troy II and Bing Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Chen, Y., Zhang, N. et al. Molecular characterization and expression analyses of ST8Sia II and IV in piglets during postnatal development: lack of correlation between transcription and posttranslational levels. Glycoconj J 32, 715–728 (2015). https://doi.org/10.1007/s10719-015-9622-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9622-6

Keywords

Navigation