Skip to main content
Log in

UDP-Gal: GlcNAc-R β1,4-galactosyltransferase—a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galactosyltransferases are important enzymes for the extension of the glycan chains of glycoproteins and glycolipids, and play critical roles in cell surface functions and in the immune system. In this work, the acceptor specificity and several inhibitors of bovine β1,4-Gal-transferase T1 (β4GalT, EC 2.4.1.90) were studied. Series of analogs of N-acetylglucosamine (GlcNAc) and GlcNAc-carrying glycopeptides were synthesized as acceptor substrates. Modifications were made at the 3-, 4- and 6-positions of the sugar ring of the acceptor, in the nature of the glycosidic linkage, in the aglycone moiety and in the 2-acetamido group. The acceptor specificity studies showed that the 4-hydroxyl group of the sugar ring was essential for β4GalT activity, but that the 3-hydroxyl could be replaced by an electronegative group. Compounds having the anomeric β-configuration were more active than those having the α-configuration, and O-, S- and C-glycosyl compounds were all active as substrates. The aglycone was a major determinant for the rate of Gal-transfer. Derivatives containing a 2-naphthyl aglycone were inactive as substrates although quinolinyl groups supported activity. Several compounds having a bicyclic structure as the aglycone were found to bind to the enzyme and inhibited the transfer of Gal to control substrates. The best small hydrophobic GlcNAc-analog inhibitor was found to be 1-thio-N-butyrylGlcNβ-(2-naphthyl) with a Ki of 0.01 mM. These studies help to delineate β4GalT–substrate interactions and will aid in the development of biologically applicable inhibitors of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Bn:

benzyl

β4GalT:

β1,4-galactosyltransferase

Me:

methyl

Ph:

phenyl

rt:

room temperature

References

  1. Hemmerich, S., Leffler, H., Rosen, S.D.: Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 270, 12035–47 (1995)

    Article  PubMed  CAS  Google Scholar 

  2. Lowe, J.B.: Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int. 51, 1418–26 (1997)

    PubMed  CAS  Google Scholar 

  3. Ivatt, R.J., Rosemeyer, M.A.: Lactose synthetase. The isolation and characterisation of the protein-protein complex. Eur. J. Biochem. 64, 233–42 (1976)

    Article  PubMed  CAS  Google Scholar 

  4. Ichikawa, T., Nakayama, J., Sakura, N., Hashimoto, T., Fukuda, M., Fukuda, M.N., Taki, T.: Expression of N-acetyllactosamine and β1,4-galactosyltransferase (β4GalT-I) during adenoma–carcinoma sequence in the human colorectum. J. Histochem. Cytochem. 47, 1593–602 (1999)

    PubMed  CAS  Google Scholar 

  5. Xu, S., Zhu, X., Zhang, S., Yin, S., Zhou, L., Chen, C., Gu, J.: Over-expression of beta-1,4-galactosyltransferase I, II, and V in human astrocytoma. J. Cancer Res. Clin. Oncol. 127, 502–6 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Odunski, K., Ghamande, S., Chandrasekaran, E.V., Ta, A., Moysich, K.B., Driscoll, D., Matta, K., Lele, S.: Evaluation of beta1,4-galactosyltransferase as a potential biomarker for the detection of subclinical disease after the completion of primary therapy for ovarian cancer. Am. J. Obstet. Gynecol. 187, 575–80 (2002)

    Article  CAS  Google Scholar 

  7. Yang, X., Lehotay, M., Anastassiades, T., Harrison, M., Brockhausen, I.: The effect of TNF-α on glycosylation pathways in bovine synoviocytes. Biochem. Cell. Biol. 82, 559–68 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Hennet, T.: The galactosyltransferase family. Cell. Mol. Life Sci. 59, 1081–95 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. Ramakrishnan, B., Qasba, P.K.: Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. J. Mol. Biol. 310, 205–18 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. Ramakrishnan, B., Balaji, P.V., Qasba, P.K.: Crystal structure of beta1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J. Mol. Biol. 318, 491–502 (2002)

    Article  PubMed  CAS  Google Scholar 

  11. Qasba, P.K., Ramakrishnan, B., Boeggeman, E.: Substrate-induced conformational changes in glycosyltransferases. Trends Biochem. Sci. 30, 53–62 (2005)

    Article  PubMed  CAS  Google Scholar 

  12. Ramakrishnan, B., Boeggeman, E., Ramasamy, V., Qasba, P.K.: Structure and catalytic cycle of beta-1,4-galactosyltransferase. Curr. Opin. Struct. Biol. 14, 593–600 (2004)

    Article  PubMed  CAS  Google Scholar 

  13. Blanken, W.M., Hooghwinkel, G.J.M., Van Den Eijnden, D.H.: Biosynthesis of blood group I and i substances. Specificity of bovine colostrum β-N-acetyl-D-glucosaminide β1→4 galactosyltransferase. Eur. J. Biochem. 127, 547–52 (1982)

    Article  PubMed  CAS  Google Scholar 

  14. Vaghefi, M.M., Bernacki, R.J., Hennen, W.J., Robins, R.K.: Synthesis of certain nucleoside methylenediphosphonate sugars as potential inhibitors of glycosyltransferases. J. Med. Chem. 30, 1391–9 (1987)

    Article  PubMed  CAS  Google Scholar 

  15. Hashimoto, H., Endo, T., Kajihara, Y.: Synthesis of the first tricomponent bisubstrate analogue that exhibits potent inhibition against GlcNAc: beta-1,4-galactosyltransferase. J. Org. Chem. 62, 1914–5 (1997)

    Article  PubMed  CAS  Google Scholar 

  16. Hindsgaul, O., Kaur, K.J., Srivastava, G., Blaszczyk-Thurin, M., Crawley, S.C., Heerze, L.D., Palcic, M.M.: Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J. Biol. Chem. 266, 17858–62 (1991)

    PubMed  CAS  Google Scholar 

  17. Kajihara, Y., Kodama, H., Endo, T., Hashimoto, H.: Novel features of acceptor recognition by β-(1→4)-galactosyltransferase. Carbohydr. Res. 306, 361–78 (1998)

    Article  CAS  Google Scholar 

  18. Field, R.A., Neville, D.C.A., Smith, R.W., Ferguson, M.A.J.: Acceptor analogs as potential inhibitors of bovine β-1,4-galactosyl transferase. Bioorg Med. Chem. Lett. 4, 391–4 (1994)

    Article  CAS  Google Scholar 

  19. Wong, C.H., Ichikawa, Y., Krach, T., Gautheron-Le Narvor, C., Dumas, D.P., Look, G.C.: Probing the acceptor specificity of β-1,4-galactosyltransferase for the development of enzymatic synthesis of novel oligosaccharides. J. Am. Chem. Soc. 113, 8137–45 (1991)

    Article  CAS  Google Scholar 

  20. Kajihara, Y., Hashimoto, H., Kodama, H.: Methyl-3-O-(2-acetami- do-2-deoxy-6-thio-β- D glucopyranosyl)-β- D-galactopyranoside: a slow reacting acceptor-analogue which inhibits glycosylation by UDP-D-galactose-N-acetyl-D-glucosamine-(1→4)-β- D-galac- tosyltransferase. Carbohydr. Res. 229, C5–C9 (1992)

    Article  PubMed  CAS  Google Scholar 

  21. Palcic, M.M., Srivastava, O.P., Hindsgaul, O.: Transfer of D-galactosyl groups to 6-O-substituted 2-acetamido-2-deoxy-D-glucose residues by use of bovine D-galactosyltransferase. Carbohydr. Res. 159, 315–24 (1987)

    Article  PubMed  CAS  Google Scholar 

  22. Kajihara, Y., Hashimoto, H., Ogawa, S.: Galactosyl transfer ability of β-(1→4)-galactosyltransferase toward 5a-carba-sugars. Carbohydr. Res. 323, 44–8 (2000)

    Article  PubMed  CAS  Google Scholar 

  23. Chung, S.J., Takayama, S., Wong, C.H.: Acceptor substrate-based selective inhibition of galactosyltransferases. Bioorg. Med. Chem. Lett. 8, 3359–64 (1998)

    Article  PubMed  CAS  Google Scholar 

  24. Mathieux, N., Paulsen, H., Meldal, M., Bock, K.: Synthesis of glycopeptide sequences of repeating units of the mucins MUC 2 and MUC 3 containing oligosaccharide side-chains with core 1, core 2, core 3, core 4 and core 6 structure. J. Chem. Soc. Perkin. Trans. 1, 2359–68 (1997)

    Article  Google Scholar 

  25. Busca, P., Piller, V., Piller, F., Martin, O.R.: Synthesis and biological evaluation of new UDP-GalNAc analogues for the study of polypeptide-α-GalNAc-transferases. Bioorg. Med. Chem. Lett. 13, 1853–6 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Buskas, T., Garegg, P.J., Konradsson, P., Maloisel, J.: Facile preparation of glycosyl donors for oligosaccharide synthesis: 2-azido-2-deoxyhexopyranosyl building blocks. Tetrahedron: Asymmetry 5, 2187–94 (1994)

    Article  CAS  Google Scholar 

  27. Sasaki, K., Nishida, Y., Kambara, M., Uzawa, H., Takahashi, T., Suzuki, T., Suzuki, Y., Kobayashi, K.: Design of N-acetyl-6-sulfo-β- D-glucosaminide-based inhibitors of influenza virus sialidase. Bioorg. Med. Chem. 12, 1367–75 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. Roy, R., Tropper, F.: Stereospecific synthesis of aryl β- D-N-acetylglucopyranosides by phase transfer catalysis. Synth. Commun. 20, 2097–102 (1990)

    CAS  Google Scholar 

  29. Roy, R., Tropper, F.D.: Carbohydrate protein interactions. Synthesis of agglutination inhibitors of wheat germ agglutinin by phase transfer catalysis. Can. J. Chem. 69, 817–21 (1991)

    Article  CAS  Google Scholar 

  30. Vauzeilles, B., Dausse, B., Palmier, S., Beau, J.M.: A one-step β-selective glycosylation of N-acetyl glucosamine and recombinant chitooligosaccharides. Tetrahedron. Lett. 42, 7567–70 (2001)

    Article  CAS  Google Scholar 

  31. Lubineau, A., Le Gallic, J., Lemoine, R., First synthesis of the 3′-sulfated Lewisa pentasaccharide, the most potent human E-selectin ligand so far. Bioorg. Med. Chem. 2, 1143 –51 (1994)

    Google Scholar 

  32. Sharma, M., Bernacki, R.J., Hillman, M.J., Korytnyk, W.: Fluorinated carbohydrates as potential plasma membrane modifiers. Synthesis of 3-deoxy-3-fluoro derivatives of 2-acetamido-2-deoxy-2-deoxy-D-hexopyranoses. Carbohydr. Res. 240, 85–93 (1993)

    Article  PubMed  CAS  Google Scholar 

  33. Srivastava, G., Alton, G., Hindsgaul, O.: Combined chemical—enzymic synthesis of deoxygenated oligosaccharide analogs: transfer of deoxygenated D-GlucpNAc residues from their UDP-GlucpNAc derivatives using N-acetylglucosaminyltransferase I. Carbohydr. Res. 207, 259–76 (1990)

    Article  PubMed  CAS  Google Scholar 

  34. Kisilevsky, R., Szarek, W.A.: Novel glycosaminoglycan precursors as anti-amyloid agents. Part II. J. Molec. Neurosci. 19, 45–50 (2002)

    CAS  Google Scholar 

  35. Berkin, A., Szarek, W.A., Kisilevsky, R.: Synthesis and biological evaluation of a radiolabeled analog of methyl 2-acetamido-2,4-dideoxy-β- D-xylo-hexopyranoside directed towards influencing cellular glycosaminoglycan biosynthesis. Carbohydr. Res. 337, 37–44 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. Berkin, A., Szarek, M.A., Plenkiewicz, J., Szarek, W.A., Kisilevsky, R.: Synthesis of 4-deoxy analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-xylose and their effects on glycoconjugate biosynthesis. Carbohydr. Res. 325, 30–45 (2000)

    Article  PubMed  CAS  Google Scholar 

  37. Berkin, A., Szarek, W.A., Kisilevsky, R.: Synthesis of 4-deoxy-4-fluoro analogues of 2-acetamido-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-galactose and their effects on cellular glycosaminoglycan biosynthesis. Carbohydr. Res. 326, 250–63 (2000)

    Article  PubMed  CAS  Google Scholar 

  38. Kisilevsky, R., Szarek, W.A.: Novel glycosaminoglycan precursors as anti-amyloid agents. Part II. J. Mol. Neuroscience 19, 45–50 (2002)

    CAS  Google Scholar 

  39. Burger, P.J., Nashed, M.A., Anderson, L.: A convenient preparation of 2-acetamido-2,6-dideoxy-D-glucose, some of its alkyl glycosides, and allyl 2-acetamido-2,6-dideoxy-α- D-galactopyranoside. Carbohydr. Res. 119, 221–30 (1983)

    Article  CAS  Google Scholar 

  40. Micheel, F., Michaelis, E.: Ueber die Reaktionen des D-glucos- amins. Umsetzungen der 1-Fluoro-N-tosyl-D-glucosamin-Derivate und der 1-Fluoro-N-methyl-N-tosyl-D-glucosamin-Derivative. Univ. Muenster, Germany, Chemische Berichte 91, 188–94 (1958)

    CAS  Google Scholar 

  41. Kisilevsky, R., Szarek, W.A., Ancsin, J., Bhat, S., Li, Z., Marone, S.: Novel glycosaminoglycan precursors as anti-amyloid agents. Part III. J. Mol. Neuroscience 20, 291–7 (2003)

    Article  CAS  Google Scholar 

  42. Ponticelli, F., Trendafilova, A., Valoti, M., Saponara, S., Sgaragli, G.: Synthesis and antiperoxidant activity of new phenolic O-glycosides. Carbohydr. Res. 330, 459–68 (2001)

    Article  PubMed  CAS  Google Scholar 

  43. Brockhausen, I., Lehotay, M., Yang, J., Qin, W., Young, D., Lucien, J., Coles, J., Paulsen, H.: Glycoprotein biosynthesis in porcine aortic endothelial cells and changes in the apoptotic cell population. Glycobiol. 12, 33–45 (2002)

    Article  CAS  Google Scholar 

  44. Heidlas, J.E., Lees, W.J., Pale, P., Whitesides, G.M.: Gram-scale synthesis of uridine 5′-diphospho-N-acetylglucosamine: comparison of enzymatic and chemical routes. J. Org. Chem. 57, 146–51 (1992)

    Article  CAS  Google Scholar 

  45. Gottlieb, H.E., Kotlyar, V., Nudelman, A.: NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–5 (1997)

    Article  PubMed  CAS  Google Scholar 

  46. Yang, J.M., Byrd, J.C., Siddiki, B.B., Chung, Y.S., Okuno, M., Sowa, M., Kim, Y.S., Matta, K.L., Brockhausen, I.: Alterations of O-glycan biosynthesis in human colon cancer tissues. Glycobiol. 4, 873–84 (1994)

    CAS  Google Scholar 

  47. Schutzbach, J.S., Forsee, W.T.: Calcium ion activation of rabbit liver α1,2-mannosidase. J. Biol. Chem. 265, 2546–9 (1990)

    PubMed  CAS  Google Scholar 

  48. Cornish-Bowden, A.: Analysis of enzyme kinetic data. Oxford University Press, Oxford (1995)

    Google Scholar 

  49. Elling, L., Zervosen, A., Gallego, R.G., Nieder, V., Malissard, M., Berger, E.G., Vliegenthart, J.F.G., Kamerling, J.P.: UDP-N-acetyl-α- D-glucosamine as acceptor substrate of β-1,4-galactosyltrans- ferase. Enzymatic synthesis of UDP-N-acetyllactosamine. Glycoconj. J. 16, 327–36 (1999)

    Article  PubMed  CAS  Google Scholar 

  50. Brockhausen, I., Carran, J., McEleney, K., Lehotay, M., Yang, X., Yin, L., Anastassiades, T.: N-acyl derivatives of glucosamine as acceptor substrates for galactosyltransferase from bone and cartilage cells. Carbohydr. Res. 340, 1997–2003 (2005)

    Article  PubMed  CAS  Google Scholar 

  51. Brockhausen, I., Möller, G., Merz, G., Adermann, K., Paulsen, H.: Control of mucin synthesis: The peptide portion of synthetic O-glycopeptide substrates influences the activity of O-glycan core 1 UDPgalactose: N-acetyl-α-galactosaminyl-R β3-galactosyltransferase. Biochem. 29, 10206–12 (1990)

    Article  CAS  Google Scholar 

  52. Brockhausen, I., Toki, D., Brockhausen, J., Peters, S., Bielfeldt, T., Kleen, A., Paulsen, H., Meldal, M., Hagen, F., Tabak, L.: Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj. J. 13, 849–56 (1996)

    Article  PubMed  CAS  Google Scholar 

  53. Granovsky, M., Bielfeldt, T., Peters, S., Paulsen, H., Meldal, M., Brockhausen, J., Brockhausen, I.: UDPgalactose:glycoprotein–N-acetyl-D-galactosamine 3-β- D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. Eur. J. Biochem. 221, 1039–46 (1994)

    Article  PubMed  CAS  Google Scholar 

  54. Möller, H., Serttas, N., Paulsen, H., Burchell, J.M., Taylor-Papadimitriou, J., Meyer, B.: NMR-based determinations of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3. Eur. J. Biochem. 269, 1444–55 (2002)

    Article  PubMed  Google Scholar 

  55. Ujita, M., Misra, A.K., McAuliffe, J., Hindsgaul, O., Fukuda, M.: Poly-N-acetyllactosamine extension in N-glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the β1,4-galactosyltransferase gene family. J. Biol. Chem. 275, 15868–75 (2000)

    Article  PubMed  CAS  Google Scholar 

  56. Ramasamy, V., Ramakrishnan, B., Boeggeman, E., Ratner, D., Seeberger, P.H., Qasba, P.K.: Oligosaccharide preferences of β1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human β1,4-galactosyltransferase-I with a pentasaccharide and trisaccharide of the N-glycan moiety. J. Mol. Biol. 353, 53–67 (2005)

    Article  PubMed  CAS  Google Scholar 

  57. Gunasekaran, K., Ma, B., Ramakrishnan, B., Qasba, P.K., Nussinov, R.: Interdependence of backbone flexibility, residue conservation, and enzyme function: A case study on β1,4-galactosyltransferase-I. Biochem. 42, 3674–87 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inka Brockhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockhausen, I., Benn, M., Bhat, S. et al. UDP-Gal: GlcNAc-R β1,4-galactosyltransferase—a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj J 23, 525–541 (2006). https://doi.org/10.1007/s10719-006-7153-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-7153-x

Keywords

Navigation