Skip to main content

Advertisement

Log in

Shadows and strong gravitational lensing: a brief review

  • Editor’s Choice (Invited Review: State of the Field)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Unless stated otherwise, the LRs under consideration are non-degenerate. See [39] for a discussion of the degenerate case.

  2. The mass of the central BH can be determined via Komar integrals.

  3. A comparable Kerr BH has the same ADM mass and angular momentum.

  4. Stable FPOs can also contribute to the lensing despite not producing a sharp signature.

  5. The stable LR does not have such a clear lensing signature.

References

  1. Eddington, A.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1920)

    Google Scholar 

  2. Chwolson, O.: Über eine mögliche Form fiktiver Doppelsterne. Astron. Nachr. 221, 329 (1924)

    Article  ADS  Google Scholar 

  3. Einstein, A.: Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936)

    Article  ADS  MATH  Google Scholar 

  4. Renn, J., Sauer, T., Stachel, J.: The origin of gravitational lensing: a postscript to Einstein’s 1936 science paper. Science 275, 184–186 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Schmidt, M.: 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963)

    Article  ADS  Google Scholar 

  6. Walsh, D., Carswell, R.F., Weymann, R.J.: 0957 + 561 A, B—twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)

    Article  ADS  Google Scholar 

  7. Strong lenses in cosmos. http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/cfaure/cosmos/info.html. Accessed Mar 2018

  8. Inada, N., Oguri, M., Pindor, B., Hennawi, J.F., Chiu, K., Zheng, W., Ichikawa, S.-I., Gregg, M.D., Becker, R.H., Suto, Y., Strauss, M.A., Turner, E.L., Keeton, C.R., Annis, J., Castander, F.J., Eisenstein, D.J., Frieman, J.A., Fukugita, M., Gunn, J.E., Johnston, D.E., Kent, S.M., Nichol, R.C., Richards, G.T., Rix, H.-W., Sheldon, E.S., Bahcall, N.A., Brinkmann, J., Ivezić, Ž., Lamb, D.Q., McKay, T.A., Schneider, D.P., York, D.G.: A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds. Nature 426, 810–812 (2003)

    Article  ADS  Google Scholar 

  9. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016)

    Article  ADS  Google Scholar 

  11. Abbott, B.P., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118(22), 221101 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. Abbott, B.P., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119(14), 141101 (2017)

    Article  ADS  Google Scholar 

  13. Abbott, B.P., et al.: GW170608: observation of a 19-solar-mass binary black hole coalescence. Astrophys. J. 851(2), L35 (2017)

    Article  ADS  Google Scholar 

  14. Cardoso, V., Franzin, E., Pani, P.: Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(17), 171101 (2016). [Erratum: Phys. Rev. Lett.117,no.8,089902(2016)]

    Article  ADS  Google Scholar 

  15. Penrose, R.: Gravitational collapse and space–time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969). [Gen. Relat. Gravit. 34, 1141 (2002)]

  17. Cunha, P.V.P., Berti, E., Herdeiro, C.A.R.: Light ring stability in ultra-compact objects. Phys. Rev. Lett. 119(25), 251102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014)

    Article  ADS  Google Scholar 

  19. Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: Dewitt, C., Dewitt, B.S. (eds.) Black Holes (Les Astres Occlus), pp. 215–239. Gordon and Breach, New York (1973)

    Google Scholar 

  20. Synge, J.L.: The escape of photons from gravitationally intense stars. Mon. Not. R. Astron. Soc. 131(3), 463–466 (1966)

    Article  ADS  Google Scholar 

  21. Johannsen, T.: Photon rings around Kerr and Kerr-like black holes. Astrophys. J. 777, 170 (2013)

    Article  ADS  Google Scholar 

  22. Riazuelo, A.: Seeing relativity—I. Basics of a raytracing code in a Schwarzschild metric (2015). arXiv:1511.06025

  23. Grandclément, P.: Light rings and light points of boson stars. Phys. Rev. D95(8), 084011 (2017)

    ADS  Google Scholar 

  24. Cunha, P.V.P., Grover, J., Herdeiro, C., Radu, E., Runarsson, H., Wittig, A.: Chaotic lensing around boson stars and Kerr black holes with scalar hair. Phys. Rev. D94(10), 104023 (2016)

    ADS  Google Scholar 

  25. Cunha, P.V.P., Font, J.A., Herdeiro, C., Radu, E., Sanchis-Gual, N., Zilhão, M.: Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D96(10), 104040 (2017)

    ADS  Google Scholar 

  26. Keir, J.: Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quantum Gravity 33(13), 135009 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  28. Teo, E.: Spherical photon orbits around a Kerr black hole. Gen. Relativ. Gravit. 35(11), 1909–1926 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Arnowitt, R., Deser, S., Misner, C.W.: Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322–1330 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  31. Grover, J., Wittig, A.: Black hole shadows and invariant phase space structures. Phys. Rev. D96(2), 024045 (2017)

    ADS  Google Scholar 

  32. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E.: Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D96(2), 024039 (2017)

    ADS  Google Scholar 

  33. Shipley, J., Dolan, S .R.: Binary black hole shadows, chaotic scattering and the Cantor set. Class. Quantum Gravity 33(17), 175001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liebling, S.L., Palenzuela, C.: Dynamical boson stars. Living Rev. Relativ. 15, 6 (2012)

    Article  ADS  MATH  Google Scholar 

  35. Kleihaus, B., Kunz, J., List, M.: Rotating boson stars and Q-balls. Phys. Rev. D 72, 064002 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. Schunck, F.E., Mielke, E.W.: Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A 249, 389–394 (1998)

    Article  ADS  Google Scholar 

  37. Bick, E., Steffen, F.D. (eds.): Topology and Geometry in Physics. Springer, Berlin (2005)

    MATH  Google Scholar 

  38. Naber, G.L.: Topology, Geometry, and Gauge Fields. Springer, New York (2000)

    Book  MATH  Google Scholar 

  39. Hod, S.: On the number of light rings in curved spacetimes of ultra-compact objects. Phys. Lett. B 776, 1–4 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Geroch, R.P.: Topology in general relativity. J. Math. Phys. 8, 782–786 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rubakov, V.A.: The null energy condition and its violation. Phys. Usp. 57, 128–142 (2014). [Usp. Fiz. Nauk 184, no. 2, 137 (2014)]

  42. Dolan, S.R., Shipley, J.O.: Stable photon orbits in stationary axisymmetric electrovacuum spacetimes. Phys. Rev. D94(4), 044038 (2016)

    ADS  MathSciNet  Google Scholar 

  43. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Robinson, D.: Four decades of black holes uniqueness theorems. In: Wiltshire, D., Visser, M., Scott, S.M. (eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  45. Chrusciel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012)

    Article  ADS  MATH  Google Scholar 

  46. Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 1, 6 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Wilkins, D.C.: Bound geodesics in the Kerr metric. Phys. Rev. D 5, 814–822 (1972)

    Article  ADS  Google Scholar 

  48. Nickalls, R.W.D.: Viète, descartes and the cubic equation. Math. Gaz. 90(518), 203–208 (2006)

    Article  Google Scholar 

  49. Zakharov, A.F., De Paolis, F., Ingrosso, G., Nucita, A.A.: Measuring the black hole parameters in the Galactic center with RADIOASTRON. New Astron. 10, 479–489 (2005)

    Article  ADS  Google Scholar 

  50. Herdeiro, C., Radu, E.: Construction and physical properties of Kerr black holes with scalar hair. Class. Quantum Gravity 32(14), 144001 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014)

    Article  ADS  Google Scholar 

  52. Muhleman, D.O., Ekers, R.D., Fomalont, E.B.: Radio interferometric test of the general relativistic light bending near the Sun. Phys. Rev. Lett. 24, 1377–1380 (1970)

    Article  ADS  Google Scholar 

  53. Perlick, V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity. Lecture notes in physics monographs. Springer, Berlin (2000)

    MATH  Google Scholar 

  54. Tsupko, OYu., Bisnovatyi-Kogan, G.S.: Gravitational lensing in plasma: relativistic images at homogeneous plasma. Phys. Rev. D87(12), 124009 (2013)

    ADS  Google Scholar 

  55. Bisnovatyi-Kogan, G.S., Tsupko, O.Y.: Gravitational lensing in plasmic medium. Plasma Phys. Rep. 41, 562 (2015)

    Article  ADS  Google Scholar 

  56. Abdujabbarov, A., Juraev, B., Ahmedov, B., Stuchlík, Z.: Shadow of rotating wormhole in plasma environment. Astrophys. Space Sci. 361(7), 226 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. Abdujabbarov, A., Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Shadow of the rotating black hole with quintessential energy in the presence of plasma. Int. J. Mod. Phys. D26(06), 1750051 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Perlick, V., Tsupko, OYu.: Light propagation in a plasma on Kerr spacetime: separation of the Hamilton–Jacobi equation and calculation of the shadow. Phys. Rev. D95(10), 104003 (2017)

    ADS  MathSciNet  Google Scholar 

  59. Herdeiro, C., Radu, E., Runarsson, H.: Kerr black holes with Proca hair. Class. Quantum Gravity 33(15), 154001 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. East, W.E., Pretorius, F.: Superradiant instability and backreaction of massive vector fields around Kerr black holes. Phys. Rev. Lett. 119(4), 041101 (2017)

    Article  ADS  Google Scholar 

  61. Herdeiro, C.A.R., Radu, E.: Kerr black holes with synchronised hair: an analytic model and dynamical formation. Phys. Rev. Lett. 119(26) (2017). https://doi.org/10.1103/PhysRevLett.119.261101

  62. Hod, S.: Stationary scalar clouds around rotating black holes. Phys. Rev. D 86, 104026 (2012)

    Article  ADS  Google Scholar 

  63. Hod, S.: Stationary resonances of rapidly-rotating Kerr black holes. Eur. Phys. J. C 73, 2378 (2013)

    Article  ADS  Google Scholar 

  64. Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relativ. 7, 9 (2004)

    Article  ADS  MATH  Google Scholar 

  65. Bohn, A., Throwe, W., Hébert, F., Henriksson, K., Bunandar, D., et al.: What does a binary black hole merger look like? Class. Quantum Gravity 32(6), 065002 (2015)

    Article  ADS  Google Scholar 

  66. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115(21), 211102 (2015)

    Article  ADS  MATH  Google Scholar 

  67. Wang, M., Chen, S., Jing, J.: Shadow casted by a Konoplya–Zhidenko rotating non-Kerr black hole. JCAP 1710(10), 051 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  68. José, J., Saletan, E.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  69. Brito, R., Cardoso, V., Herdeiro, C.A.R., Radu, E.: Proca stars: gravitating Bose–Einstein condensates of massive spin 1 particles. Phys. Lett. B 752, 291–295 (2016)

    Article  ADS  Google Scholar 

  70. Pikel’Ner, S.B.: Book review: Ya. B. Zel’dovich and I. D. Novikov. The theory of gravitation and stellar evolution. Sov. Astron. 17, 562 (1974)

    ADS  Google Scholar 

  71. Chakraborty, S., SenGupta, S.: Strong gravitational lensing—a probe for extra dimensions and Kalb–Ramond field. JCAP 1707(07), 045 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  72. Cunha, P.V.P., Herdeiro, C.A.R., Kleihaus, B., Kunz, J., Radu, E.: Shadows of Einstein-dilaton–Gauss–Bonnet black holes. Phys. Lett. B 768, 373–379 (2017)

    Article  ADS  MATH  Google Scholar 

  73. Ostrogradsky, M.: Mémoires sur les équations différentielles, relatives au problème des isopérimètres. Mem. Acad. St. Petersbourg 6(4), 385–517 (1850)

    Google Scholar 

  74. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. 156B, 315–317 (1985)

    Article  ADS  Google Scholar 

  76. Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K., Winstanley, E.: Dilatonic black holes in higher curvature string gravity. Phys. Rev. D 54, 5049–5058 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  77. Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K., Winstanley, E.: Dilatonic black holes in higher curvature string gravity. 2: linear stability. Phys. Rev. D 57, 6255–6264 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  78. Torii, T., Yajima, H., Maeda, K.-I.: Dilatonic black holes with Gauss–Bonnet term. Phys. Rev. D 55, 739–753 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  79. Alexeev, S.O., Pomazanov, M.V.: Black hole solutions with dilatonic hair in higher curvature gravity. Phys. Rev. D 55, 2110–2118 (1997)

    Article  ADS  Google Scholar 

  80. Melis, M., Mignemi, S.: Global properties of charged dilatonic Gauss–Bonnet black holes. Phys. Rev. D 73, 083010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  81. Chen, C.-M., Gal’tsov, D.V., Orlov, D.G.: Extremal black holes in D = 4 Gauss–Bonnet gravity. Phys. Rev. D 75, 084030 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  82. Chen, C.-M., Gal’tsov, D.V., Orlov, D.G.: Extremal dyonic black holes in D = 4 Gauss–Bonnet gravity. Phys. Rev. D 78, 104013 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  83. Kleihaus, B., Kunz, J., Radu, E.: Rotating black holes in dilatonic Einstein–Gauss–Bonnet theory. Phys. Rev. Lett. 106, 151104 (2011)

    Article  ADS  Google Scholar 

  84. Kleihaus, B., Kunz, J., Mojica, S., Radu, E.: Spinning black holes in Einstein–Gauss–Bonnet-dilaton theory: nonperturbative solutions. Phys. Rev. D93(4), 044047 (2016)

    ADS  MathSciNet  Google Scholar 

  85. Pani, P., Cardoso, V.: Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton–Gauss–Bonnet black holes. Phys. Rev. D 79, 084031 (2009)

    Article  ADS  Google Scholar 

  86. Pani, P., Macedo, C.F.B., Crispino, L.C.B., Cardoso, V.: Slowly rotating black holes in alternative theories of gravity. Phys. Rev. D 84, 087501 (2011)

    Article  ADS  Google Scholar 

  87. Ayzenberg, D., Yunes, N.: Slowly-rotating black holes in Einstein-dilaton–Gauss–Bonnet gravity: quadratic order in spin solutions. Phys. Rev. D 90, 044066 (2014). [Erratum: Phys. Rev.D91,no.6,069905 (2015)]

    Article  ADS  Google Scholar 

  88. Maselli, A., Pani, P., Gualtieri, L., Ferrari, V.: Rotating black holes in Einstein-dilaton–Gauss–Bonnet gravity with finite coupling. Phys. Rev. D92(8), 083014 (2015)

    ADS  MathSciNet  Google Scholar 

  89. Herdeiro, C.A.R., Radu, E.: Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D24(09), 1542014 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Amarilla, L., Eiroa, E.F.: Shadow of a rotating braneworld black hole. Phys. Rev. D 85, 064019 (2012)

    Article  ADS  Google Scholar 

  91. Yumoto, A., Nitta, D., Chiba, T., Sugiyama, N.: Shadows of multi-black holes: analytic exploration. Phys. Rev. D 86, 103001 (2012)

    Article  ADS  Google Scholar 

  92. Abdujabbarov, A., Atamurotov, F., Kucukakca, Y., Ahmedov, B., Camci, U.: Shadow of Kerr–Taub–NUT black hole. Astrophys. Space Sci. 344, 429–435 (2013)

    Article  ADS  Google Scholar 

  93. Amarilla, L., Eiroa, E.F.: Shadow of a Kaluza–Klein rotating dilaton black hole. Phys. Rev. D87(4), 044057 (2013)

    ADS  Google Scholar 

  94. Nedkova, P.G., Tinchev, V.K., Yazadjiev, S.S.: Shadow of a rotating traversable wormhole. Phys. Rev. D88(12), 124019 (2013)

    ADS  Google Scholar 

  95. Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating Hor̃ava–Lifshitz black hole. Astrophys. Space Sci. 348, 179–188 (2013)

    Article  ADS  Google Scholar 

  96. Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating non-Kerr black hole. Phys. Rev. D88(6), 064004 (2013)

    ADS  Google Scholar 

  97. Li, Z., Bambi, C.: Measuring the Kerr spin parameter of regular black holes from their shadow. JCAP 1401, 041 (2014)

    Article  ADS  Google Scholar 

  98. Tinchev, V.K., Yazadjiev, S.S.: Possible imprints of cosmic strings in the shadows of galactic black holes. Int. J. Mod. Phys. D 23, 1450060 (2014)

    Article  ADS  MATH  Google Scholar 

  99. Wei, S.-W., Liu, Y.-X.: Observing the shadow of Einstein–Maxwell-dilaton-axion black hole. JCAP 1311, 063 (2013)

    Article  ADS  Google Scholar 

  100. Tsukamoto, N., Li, Z., Bambi, C.: Constraining the spin and the deformation parameters from the black hole shadow. JCAP 1406, 043 (2014)

    Article  ADS  Google Scholar 

  101. Grenzebach, A., Perlick, V., Lammerzahl, C.: Photon regions and shadows of Kerr–Newman–NUT black holes with a cosmological constant. Phys. Rev. D89(12), 124004 (2014)

    ADS  Google Scholar 

  102. Lu, R.-S., Broderick, A.E., Baron, F., Monnier, J.D., Fish, V.L., Doeleman, S.S., Pankratius, V.: Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope. Astrophys. J. 788, 120 (2014)

    Article  ADS  Google Scholar 

  103. Papnoi, U., Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Shadow of five-dimensional rotating Myers–Perry black hole. Phys. Rev. D90(2), 024073 (2014)

    ADS  Google Scholar 

  104. Sakai, N., Saida, H., Tamaki, T.: Gravastar shadows. Phys. Rev. D90(10), 104013 (2014)

    ADS  Google Scholar 

  105. Psaltis, D., Ozel, F., Chan, C.-K., Marrone, D.P.: A general relativistic null hypothesis test with event horizon telescope observations of the black-hole shadow in Sgr A*. Astrophys. J. 814(2), 115 (2015)

    Article  ADS  Google Scholar 

  106. Wei, S.-W., Cheng, P., Zhong, Y., Zhou, X.-N.: Shadow of noncommutative geometry inspired black hole. JCAP 1508(08), 004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  107. Abdolrahimi, S., Mann, R.B., Tzounis, C.: Distorted local shadows. Phys. Rev. D91(8), 084052 (2015)

    ADS  MathSciNet  Google Scholar 

  108. Moffat, J.W.: Modified gravity black holes and their observable shadows. Eur. Phys. J. C75(3), 130 (2015)

    Article  ADS  Google Scholar 

  109. Grenzebach, A.: Aberrational effects for shadows of black holes. Fund. Theor. Phys. 179, 823–832 (2015)

    MathSciNet  MATH  Google Scholar 

  110. Vincent, F .H., Meliani, Z., Grandclement, P., Gourgoulhon, E., Straub, O.: Imaging a boson star at the Galactic center. Class. Quantum Gravity 33(10), 105015 (2016)

    Article  ADS  Google Scholar 

  111. Grenzebach, A., Perlick, V., Lammerzahl, C.: Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 24, 1542024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Abdujabbarov, A.A., Rezzolla, L., Ahmedov, B.J.: A coordinate-independent characterization of a black hole shadow. Mon. Not. R. Astron. Soc. 454(3), 2423–2435 (2015)

    Article  ADS  Google Scholar 

  113. Ortiz, N., Sarbach, O., Zannias, T.: Shadow of a naked singularity. Phys. Rev. D92(4), 044035 (2015)

    ADS  Google Scholar 

  114. Ghasemi-Nodehi, M., Li, Z., Bambi, C.: Shadows of CPR black holes and tests of the Kerr metric. Eur. Phys. J. C 75, 315 (2015)

    Article  ADS  Google Scholar 

  115. Ohgami, T., Sakai, N.: Wormhole shadows. Phys. Rev. D91(12), 124020 (2015)

    ADS  MathSciNet  Google Scholar 

  116. Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Horizon structure of rotating Einstein–Born–Infeld black holes and shadow. Eur. Phys. J. C76(5), 273 (2016)

    Article  ADS  Google Scholar 

  117. Perlick, V., Tsupko, OYu., Bisnovatyi-Kogan, G.S.: Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D92(10), 104031 (2015)

    ADS  MathSciNet  Google Scholar 

  118. Bambi, C.: Testing the Kerr paradigm with the black hole shadow. In: 14th Marcel Grossmann Meeting on General Relativity on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) Rome, Italy, July 12–18 (2015)

  119. Atamurotov, F., Ahmedov, B.: Optical properties of black hole in the presence of plasma: shadow. Phys. Rev. D 92, 084005 (2015)

    Article  ADS  Google Scholar 

  120. Yang, L., Li, Z.: Shadow of a dressed black hole and determination of spin and viewing angle. Int. J. Mod. Phys. D25(02), 1650026 (2015)

    Article  ADS  Google Scholar 

  121. Tinchev, V.K.: The shadow of generalized Kerr black holes with exotic matter. Chin. J. Phys. 53, 110113 (2015)

    MathSciNet  Google Scholar 

  122. Amir, M., Ghosh, S.G.: Shapes of rotating nonsingular black hole shadows. Phys. Rev. D94(2), 024054 (2016)

    ADS  MathSciNet  Google Scholar 

  123. Johannsen, T., Broderick, A.E., Plewa, P.M., Chatzopoulos, S., Doeleman, S.S., Eisenhauer, F., Fish, V.L., Genzel, R., Gerhard, O., Johnson, M.D.: Testing general relativity with the shadow size of Sgr A*. Phys. Rev. Lett. 116(3), 031101 (2016)

    Article  ADS  Google Scholar 

  124. Abdujabbarov, A., Amir, M., Ahmedov, B., Ghosh, S.G.: Shadow of rotating regular black holes. Phys. Rev. D93(10), 104004 (2016)

    ADS  MathSciNet  Google Scholar 

  125. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D 25(9) (2016). https://doi.org/10.1142/S0218271816410212

  126. Huang, Y., Chen, S., Jing, J.: Double shadow of a regular phantom black hole as photons couple to Weyl tensor. Eur. Phys. J. C 76, 594 (2016)

    Article  ADS  Google Scholar 

  127. Dastan, S., Saffari, R., Soroushfar, S.: Shadow of a charged rotating black hole in \(f(R)\) gravity (2016). arXiv:1606.06994

  128. Younsi, Z., Zhidenko, A., Rezzolla, L., Konoplya, R., Mizuno, Y.: A new method for shadow calculations: application to parameterised axisymmetric black holes. Phys. Rev. D 94, 084025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  129. Ohgami, T., Sakai, N.: Wormhole shadows in rotating dust. Phys. Rev. D94(6), 064071 (2016)

    ADS  MathSciNet  Google Scholar 

  130. Mureika, J.R., Varieschi, G.U.: Black hole shadows in fourth-order conformal Weyl gravity. Can. J. Phys. 95, 1299 (2016)

    Article  ADS  Google Scholar 

  131. Sharif, M., Iftikhar, S.: Shadow of a charged rotating non-commutative black hole. Eur. Phys. J. C76(11), 630 (2016)

    Article  ADS  Google Scholar 

  132. Tsupko, OYu.: Analytical calculation of black hole spin using deformation of the shadow. Phys. Rev. D95(10), 104058 (2017)

    ADS  MathSciNet  Google Scholar 

  133. Bisnovatyi-Kogan, G., Tsupko, O.: Gravitational lensing in presence of plasma: strong lens systems, black hole lensing and shadow. Universe 3(3), 57 (2017)

    Article  ADS  Google Scholar 

  134. Amir, M., Singh, B.P., Ghosh, S.G.: Shadows of rotating five-dimensional EMCS black holes (2017). arXiv:1707.09521

  135. Alhamzawi, A.: Observing the shadow of modified gravity black hole. Int. J. Mod. Phys. D26(14), 1750156 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  136. Tsukamoto, N.: Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: the Kerr–Newman and rotating regular black holes (2017). arXiv:1708.07427

  137. Mars, M., Paganini, C .F., Oancea, M .A.: The fingerprints of black holes-shadows and their degeneracies. Class. Quantum Gravity 35(2), 025005 (2018)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  138. Wang, M., Chen, S., Jing, J.: Shadows of a compact object with magnetic dipole by chaotic lensing (2017). arXiv:1710.07172

  139. Singh, B.P.: Rotating charge black holes shadow in quintessence (2017). arXiv:1711.02898

  140. Eiroa, E.F., Sendra, C.M.: Shadow cast by rotating braneworld black holes with a cosmological constant. Eur. Phys. J. C78(2), 91 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank E. Berti, J. Grover, E. Radu, H. Rúnarsson, A. Wittig for collaboration on some of the work reviewed in this paper. We would also like to thank all the participants in the Gravitational lensing and black hole shadows workshop that took place in Aveiro, Portugal, in November 2016, for many stimulating discussions on these topics. P.C. is supported by Grant No. PD/BD/114071/2015 under the FCT-IDPASC Portugal Ph.D. program. C.H. acknowledges funding from the FCT-IF programme. This work was partially supported by the H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904, the H2020-MSCA-RISE-2017 Grant No. FunFiCO-777740 and by the CIDMA Project UID/MAT/04106/2013 The authors would like to acknowledge networking support by the COST Action CA16104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro V. P. Cunha.

Additional information

This article belongs to the Topical Collection: Testing the Kerr spacetime with gravitational-wave and electromagnetic observations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, P.V.P., Herdeiro, C.A.R. Shadows and strong gravitational lensing: a brief review. Gen Relativ Gravit 50, 42 (2018). https://doi.org/10.1007/s10714-018-2361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2361-9

Keywords