Abstract
For ultra compact objects, light rings and fundamental photon orbits (FPOs) play a pivotal role in the theoretical analysis of strong gravitational lensing effects, and of BH shadows in particular. In this short review, specific models are considered to illustrate how FPOs can be useful in order to understand some non-trivial gravitational lensing effects. This paper aims at briefly overviewing the theoretical foundations of these effects, touching also some of the related phenomenology, both in general relativity and alternative theories of gravity, hopefully providing some intuition and new insights for the underlying physics, which might be critical when testing the Kerr black hole hypothesis.









Similar content being viewed by others
Notes
Unless stated otherwise, the LRs under consideration are non-degenerate. See [39] for a discussion of the degenerate case.
The mass of the central BH can be determined via Komar integrals.
A comparable Kerr BH has the same ADM mass and angular momentum.
Stable FPOs can also contribute to the lensing despite not producing a sharp signature.
The stable LR does not have such a clear lensing signature.
References
Eddington, A.: Space, Time and Gravitation. Cambridge University Press, Cambridge (1920)
Chwolson, O.: Über eine mögliche Form fiktiver Doppelsterne. Astron. Nachr. 221, 329 (1924)
Einstein, A.: Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936)
Renn, J., Sauer, T., Stachel, J.: The origin of gravitational lensing: a postscript to Einstein’s 1936 science paper. Science 275, 184–186 (1997)
Schmidt, M.: 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963)
Walsh, D., Carswell, R.F., Weymann, R.J.: 0957 + 561 A, B—twin quasistellar objects or gravitational lens. Nature 279, 381–384 (1979)
Strong lenses in cosmos. http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/cfaure/cosmos/info.html. Accessed Mar 2018
Inada, N., Oguri, M., Pindor, B., Hennawi, J.F., Chiu, K., Zheng, W., Ichikawa, S.-I., Gregg, M.D., Becker, R.H., Suto, Y., Strauss, M.A., Turner, E.L., Keeton, C.R., Annis, J., Castander, F.J., Eisenstein, D.J., Frieman, J.A., Fukugita, M., Gunn, J.E., Johnston, D.E., Kent, S.M., Nichol, R.C., Richards, G.T., Rix, H.-W., Sheldon, E.S., Bahcall, N.A., Brinkmann, J., Ivezić, Ž., Lamb, D.Q., McKay, T.A., Schneider, D.P., York, D.G.: A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds. Nature 426, 810–812 (2003)
Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)
Abbott, B.P., et al.: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016)
Abbott, B.P., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118(22), 221101 (2017)
Abbott, B.P., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119(14), 141101 (2017)
Abbott, B.P., et al.: GW170608: observation of a 19-solar-mass binary black hole coalescence. Astrophys. J. 851(2), L35 (2017)
Cardoso, V., Franzin, E., Pani, P.: Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(17), 171101 (2016). [Erratum: Phys. Rev. Lett.117,no.8,089902(2016)]
Penrose, R.: Gravitational collapse and space–time singularities. Phys. Rev. Lett. 14, 57–59 (1965)
Penrose, R.: Gravitational collapse: the role of general relativity. Riv. Nuovo Cim. 1, 252–276 (1969). [Gen. Relat. Gravit. 34, 1141 (2002)]
Cunha, P.V.P., Berti, E., Herdeiro, C.A.R.: Light ring stability in ultra-compact objects. Phys. Rev. Lett. 119(25), 251102 (2017)
Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys. J. 784, 7 (2014)
Bardeen, J.M.: Timelike and null geodesics in the Kerr metric. In: Dewitt, C., Dewitt, B.S. (eds.) Black Holes (Les Astres Occlus), pp. 215–239. Gordon and Breach, New York (1973)
Synge, J.L.: The escape of photons from gravitationally intense stars. Mon. Not. R. Astron. Soc. 131(3), 463–466 (1966)
Johannsen, T.: Photon rings around Kerr and Kerr-like black holes. Astrophys. J. 777, 170 (2013)
Riazuelo, A.: Seeing relativity—I. Basics of a raytracing code in a Schwarzschild metric (2015). arXiv:1511.06025
Grandclément, P.: Light rings and light points of boson stars. Phys. Rev. D95(8), 084011 (2017)
Cunha, P.V.P., Grover, J., Herdeiro, C., Radu, E., Runarsson, H., Wittig, A.: Chaotic lensing around boson stars and Kerr black holes with scalar hair. Phys. Rev. D94(10), 104023 (2016)
Cunha, P.V.P., Font, J.A., Herdeiro, C., Radu, E., Sanchis-Gual, N., Zilhão, M.: Lensing and dynamics of ultracompact bosonic stars. Phys. Rev. D96(10), 104040 (2017)
Keir, J.: Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars. Class. Quantum Gravity 33(13), 135009 (2016)
Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)
Teo, E.: Spherical photon orbits around a Kerr black hole. Gen. Relativ. Gravit. 35(11), 1909–1926 (2003)
Arnowitt, R., Deser, S., Misner, C.W.: Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322–1330 (1959)
Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)
Grover, J., Wittig, A.: Black hole shadows and invariant phase space structures. Phys. Rev. D96(2), 024045 (2017)
Cunha, P.V.P., Herdeiro, C.A.R., Radu, E.: Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D96(2), 024039 (2017)
Shipley, J., Dolan, S .R.: Binary black hole shadows, chaotic scattering and the Cantor set. Class. Quantum Gravity 33(17), 175001 (2016)
Liebling, S.L., Palenzuela, C.: Dynamical boson stars. Living Rev. Relativ. 15, 6 (2012)
Kleihaus, B., Kunz, J., List, M.: Rotating boson stars and Q-balls. Phys. Rev. D 72, 064002 (2005)
Schunck, F.E., Mielke, E.W.: Rotating boson star as an effective mass torus in general relativity. Phys. Lett. A 249, 389–394 (1998)
Bick, E., Steffen, F.D. (eds.): Topology and Geometry in Physics. Springer, Berlin (2005)
Naber, G.L.: Topology, Geometry, and Gauge Fields. Springer, New York (2000)
Hod, S.: On the number of light rings in curved spacetimes of ultra-compact objects. Phys. Lett. B 776, 1–4 (2018)
Geroch, R.P.: Topology in general relativity. J. Math. Phys. 8, 782–786 (1967)
Rubakov, V.A.: The null energy condition and its violation. Phys. Usp. 57, 128–142 (2014). [Usp. Fiz. Nauk 184, no. 2, 137 (2014)]
Dolan, S.R., Shipley, J.O.: Stable photon orbits in stationary axisymmetric electrovacuum spacetimes. Phys. Rev. D94(4), 044038 (2016)
Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)
Robinson, D.: Four decades of black holes uniqueness theorems. In: Wiltshire, D., Visser, M., Scott, S.M. (eds.) The Kerr Spacetime: Rotating Black Holes in General Relativity. Cambridge University Press, Cambridge (2009)
Chrusciel, P.T., Costa, J.L., Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 15, 7 (2012)
Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativ. 1, 6 (1998)
Wilkins, D.C.: Bound geodesics in the Kerr metric. Phys. Rev. D 5, 814–822 (1972)
Nickalls, R.W.D.: Viète, descartes and the cubic equation. Math. Gaz. 90(518), 203–208 (2006)
Zakharov, A.F., De Paolis, F., Ingrosso, G., Nucita, A.A.: Measuring the black hole parameters in the Galactic center with RADIOASTRON. New Astron. 10, 479–489 (2005)
Herdeiro, C., Radu, E.: Construction and physical properties of Kerr black holes with scalar hair. Class. Quantum Gravity 32(14), 144001 (2015)
Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014)
Muhleman, D.O., Ekers, R.D., Fomalont, E.B.: Radio interferometric test of the general relativistic light bending near the Sun. Phys. Rev. Lett. 24, 1377–1380 (1970)
Perlick, V.: Ray Optics, Fermat’s Principle, and Applications to General Relativity. Lecture notes in physics monographs. Springer, Berlin (2000)
Tsupko, OYu., Bisnovatyi-Kogan, G.S.: Gravitational lensing in plasma: relativistic images at homogeneous plasma. Phys. Rev. D87(12), 124009 (2013)
Bisnovatyi-Kogan, G.S., Tsupko, O.Y.: Gravitational lensing in plasmic medium. Plasma Phys. Rep. 41, 562 (2015)
Abdujabbarov, A., Juraev, B., Ahmedov, B., Stuchlík, Z.: Shadow of rotating wormhole in plasma environment. Astrophys. Space Sci. 361(7), 226 (2016)
Abdujabbarov, A., Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Shadow of the rotating black hole with quintessential energy in the presence of plasma. Int. J. Mod. Phys. D26(06), 1750051 (2016)
Perlick, V., Tsupko, OYu.: Light propagation in a plasma on Kerr spacetime: separation of the Hamilton–Jacobi equation and calculation of the shadow. Phys. Rev. D95(10), 104003 (2017)
Herdeiro, C., Radu, E., Runarsson, H.: Kerr black holes with Proca hair. Class. Quantum Gravity 33(15), 154001 (2016)
East, W.E., Pretorius, F.: Superradiant instability and backreaction of massive vector fields around Kerr black holes. Phys. Rev. Lett. 119(4), 041101 (2017)
Herdeiro, C.A.R., Radu, E.: Kerr black holes with synchronised hair: an analytic model and dynamical formation. Phys. Rev. Lett. 119(26) (2017). https://doi.org/10.1103/PhysRevLett.119.261101
Hod, S.: Stationary scalar clouds around rotating black holes. Phys. Rev. D 86, 104026 (2012)
Hod, S.: Stationary resonances of rapidly-rotating Kerr black holes. Eur. Phys. J. C 73, 2378 (2013)
Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relativ. 7, 9 (2004)
Bohn, A., Throwe, W., Hébert, F., Henriksson, K., Bunandar, D., et al.: What does a binary black hole merger look like? Class. Quantum Gravity 32(6), 065002 (2015)
Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115(21), 211102 (2015)
Wang, M., Chen, S., Jing, J.: Shadow casted by a Konoplya–Zhidenko rotating non-Kerr black hole. JCAP 1710(10), 051 (2017)
José, J., Saletan, E.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)
Brito, R., Cardoso, V., Herdeiro, C.A.R., Radu, E.: Proca stars: gravitating Bose–Einstein condensates of massive spin 1 particles. Phys. Lett. B 752, 291–295 (2016)
Pikel’Ner, S.B.: Book review: Ya. B. Zel’dovich and I. D. Novikov. The theory of gravitation and stellar evolution. Sov. Astron. 17, 562 (1974)
Chakraborty, S., SenGupta, S.: Strong gravitational lensing—a probe for extra dimensions and Kalb–Ramond field. JCAP 1707(07), 045 (2017)
Cunha, P.V.P., Herdeiro, C.A.R., Kleihaus, B., Kunz, J., Radu, E.: Shadows of Einstein-dilaton–Gauss–Bonnet black holes. Phys. Lett. B 768, 373–379 (2017)
Ostrogradsky, M.: Mémoires sur les équations différentielles, relatives au problème des isopérimètres. Mem. Acad. St. Petersbourg 6(4), 385–517 (1850)
Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971)
Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. 156B, 315–317 (1985)
Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K., Winstanley, E.: Dilatonic black holes in higher curvature string gravity. Phys. Rev. D 54, 5049–5058 (1996)
Kanti, P., Mavromatos, N.E., Rizos, J., Tamvakis, K., Winstanley, E.: Dilatonic black holes in higher curvature string gravity. 2: linear stability. Phys. Rev. D 57, 6255–6264 (1998)
Torii, T., Yajima, H., Maeda, K.-I.: Dilatonic black holes with Gauss–Bonnet term. Phys. Rev. D 55, 739–753 (1997)
Alexeev, S.O., Pomazanov, M.V.: Black hole solutions with dilatonic hair in higher curvature gravity. Phys. Rev. D 55, 2110–2118 (1997)
Melis, M., Mignemi, S.: Global properties of charged dilatonic Gauss–Bonnet black holes. Phys. Rev. D 73, 083010 (2006)
Chen, C.-M., Gal’tsov, D.V., Orlov, D.G.: Extremal black holes in D = 4 Gauss–Bonnet gravity. Phys. Rev. D 75, 084030 (2007)
Chen, C.-M., Gal’tsov, D.V., Orlov, D.G.: Extremal dyonic black holes in D = 4 Gauss–Bonnet gravity. Phys. Rev. D 78, 104013 (2008)
Kleihaus, B., Kunz, J., Radu, E.: Rotating black holes in dilatonic Einstein–Gauss–Bonnet theory. Phys. Rev. Lett. 106, 151104 (2011)
Kleihaus, B., Kunz, J., Mojica, S., Radu, E.: Spinning black holes in Einstein–Gauss–Bonnet-dilaton theory: nonperturbative solutions. Phys. Rev. D93(4), 044047 (2016)
Pani, P., Cardoso, V.: Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton–Gauss–Bonnet black holes. Phys. Rev. D 79, 084031 (2009)
Pani, P., Macedo, C.F.B., Crispino, L.C.B., Cardoso, V.: Slowly rotating black holes in alternative theories of gravity. Phys. Rev. D 84, 087501 (2011)
Ayzenberg, D., Yunes, N.: Slowly-rotating black holes in Einstein-dilaton–Gauss–Bonnet gravity: quadratic order in spin solutions. Phys. Rev. D 90, 044066 (2014). [Erratum: Phys. Rev.D91,no.6,069905 (2015)]
Maselli, A., Pani, P., Gualtieri, L., Ferrari, V.: Rotating black holes in Einstein-dilaton–Gauss–Bonnet gravity with finite coupling. Phys. Rev. D92(8), 083014 (2015)
Herdeiro, C.A.R., Radu, E.: Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D24(09), 1542014 (2015)
Amarilla, L., Eiroa, E.F.: Shadow of a rotating braneworld black hole. Phys. Rev. D 85, 064019 (2012)
Yumoto, A., Nitta, D., Chiba, T., Sugiyama, N.: Shadows of multi-black holes: analytic exploration. Phys. Rev. D 86, 103001 (2012)
Abdujabbarov, A., Atamurotov, F., Kucukakca, Y., Ahmedov, B., Camci, U.: Shadow of Kerr–Taub–NUT black hole. Astrophys. Space Sci. 344, 429–435 (2013)
Amarilla, L., Eiroa, E.F.: Shadow of a Kaluza–Klein rotating dilaton black hole. Phys. Rev. D87(4), 044057 (2013)
Nedkova, P.G., Tinchev, V.K., Yazadjiev, S.S.: Shadow of a rotating traversable wormhole. Phys. Rev. D88(12), 124019 (2013)
Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating Hor̃ava–Lifshitz black hole. Astrophys. Space Sci. 348, 179–188 (2013)
Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating non-Kerr black hole. Phys. Rev. D88(6), 064004 (2013)
Li, Z., Bambi, C.: Measuring the Kerr spin parameter of regular black holes from their shadow. JCAP 1401, 041 (2014)
Tinchev, V.K., Yazadjiev, S.S.: Possible imprints of cosmic strings in the shadows of galactic black holes. Int. J. Mod. Phys. D 23, 1450060 (2014)
Wei, S.-W., Liu, Y.-X.: Observing the shadow of Einstein–Maxwell-dilaton-axion black hole. JCAP 1311, 063 (2013)
Tsukamoto, N., Li, Z., Bambi, C.: Constraining the spin and the deformation parameters from the black hole shadow. JCAP 1406, 043 (2014)
Grenzebach, A., Perlick, V., Lammerzahl, C.: Photon regions and shadows of Kerr–Newman–NUT black holes with a cosmological constant. Phys. Rev. D89(12), 124004 (2014)
Lu, R.-S., Broderick, A.E., Baron, F., Monnier, J.D., Fish, V.L., Doeleman, S.S., Pankratius, V.: Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope. Astrophys. J. 788, 120 (2014)
Papnoi, U., Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Shadow of five-dimensional rotating Myers–Perry black hole. Phys. Rev. D90(2), 024073 (2014)
Sakai, N., Saida, H., Tamaki, T.: Gravastar shadows. Phys. Rev. D90(10), 104013 (2014)
Psaltis, D., Ozel, F., Chan, C.-K., Marrone, D.P.: A general relativistic null hypothesis test with event horizon telescope observations of the black-hole shadow in Sgr A*. Astrophys. J. 814(2), 115 (2015)
Wei, S.-W., Cheng, P., Zhong, Y., Zhou, X.-N.: Shadow of noncommutative geometry inspired black hole. JCAP 1508(08), 004 (2015)
Abdolrahimi, S., Mann, R.B., Tzounis, C.: Distorted local shadows. Phys. Rev. D91(8), 084052 (2015)
Moffat, J.W.: Modified gravity black holes and their observable shadows. Eur. Phys. J. C75(3), 130 (2015)
Grenzebach, A.: Aberrational effects for shadows of black holes. Fund. Theor. Phys. 179, 823–832 (2015)
Vincent, F .H., Meliani, Z., Grandclement, P., Gourgoulhon, E., Straub, O.: Imaging a boson star at the Galactic center. Class. Quantum Gravity 33(10), 105015 (2016)
Grenzebach, A., Perlick, V., Lammerzahl, C.: Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 24, 1542024 (2015)
Abdujabbarov, A.A., Rezzolla, L., Ahmedov, B.J.: A coordinate-independent characterization of a black hole shadow. Mon. Not. R. Astron. Soc. 454(3), 2423–2435 (2015)
Ortiz, N., Sarbach, O., Zannias, T.: Shadow of a naked singularity. Phys. Rev. D92(4), 044035 (2015)
Ghasemi-Nodehi, M., Li, Z., Bambi, C.: Shadows of CPR black holes and tests of the Kerr metric. Eur. Phys. J. C 75, 315 (2015)
Ohgami, T., Sakai, N.: Wormhole shadows. Phys. Rev. D91(12), 124020 (2015)
Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Horizon structure of rotating Einstein–Born–Infeld black holes and shadow. Eur. Phys. J. C76(5), 273 (2016)
Perlick, V., Tsupko, OYu., Bisnovatyi-Kogan, G.S.: Influence of a plasma on the shadow of a spherically symmetric black hole. Phys. Rev. D92(10), 104031 (2015)
Bambi, C.: Testing the Kerr paradigm with the black hole shadow. In: 14th Marcel Grossmann Meeting on General Relativity on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) Rome, Italy, July 12–18 (2015)
Atamurotov, F., Ahmedov, B.: Optical properties of black hole in the presence of plasma: shadow. Phys. Rev. D 92, 084005 (2015)
Yang, L., Li, Z.: Shadow of a dressed black hole and determination of spin and viewing angle. Int. J. Mod. Phys. D25(02), 1650026 (2015)
Tinchev, V.K.: The shadow of generalized Kerr black holes with exotic matter. Chin. J. Phys. 53, 110113 (2015)
Amir, M., Ghosh, S.G.: Shapes of rotating nonsingular black hole shadows. Phys. Rev. D94(2), 024054 (2016)
Johannsen, T., Broderick, A.E., Plewa, P.M., Chatzopoulos, S., Doeleman, S.S., Eisenhauer, F., Fish, V.L., Genzel, R., Gerhard, O., Johnson, M.D.: Testing general relativity with the shadow size of Sgr A*. Phys. Rev. Lett. 116(3), 031101 (2016)
Abdujabbarov, A., Amir, M., Ahmedov, B., Ghosh, S.G.: Shadow of rotating regular black holes. Phys. Rev. D93(10), 104004 (2016)
Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D 25(9) (2016). https://doi.org/10.1142/S0218271816410212
Huang, Y., Chen, S., Jing, J.: Double shadow of a regular phantom black hole as photons couple to Weyl tensor. Eur. Phys. J. C 76, 594 (2016)
Dastan, S., Saffari, R., Soroushfar, S.: Shadow of a charged rotating black hole in \(f(R)\) gravity (2016). arXiv:1606.06994
Younsi, Z., Zhidenko, A., Rezzolla, L., Konoplya, R., Mizuno, Y.: A new method for shadow calculations: application to parameterised axisymmetric black holes. Phys. Rev. D 94, 084025 (2016)
Ohgami, T., Sakai, N.: Wormhole shadows in rotating dust. Phys. Rev. D94(6), 064071 (2016)
Mureika, J.R., Varieschi, G.U.: Black hole shadows in fourth-order conformal Weyl gravity. Can. J. Phys. 95, 1299 (2016)
Sharif, M., Iftikhar, S.: Shadow of a charged rotating non-commutative black hole. Eur. Phys. J. C76(11), 630 (2016)
Tsupko, OYu.: Analytical calculation of black hole spin using deformation of the shadow. Phys. Rev. D95(10), 104058 (2017)
Bisnovatyi-Kogan, G., Tsupko, O.: Gravitational lensing in presence of plasma: strong lens systems, black hole lensing and shadow. Universe 3(3), 57 (2017)
Amir, M., Singh, B.P., Ghosh, S.G.: Shadows of rotating five-dimensional EMCS black holes (2017). arXiv:1707.09521
Alhamzawi, A.: Observing the shadow of modified gravity black hole. Int. J. Mod. Phys. D26(14), 1750156 (2017)
Tsukamoto, N.: Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: the Kerr–Newman and rotating regular black holes (2017). arXiv:1708.07427
Mars, M., Paganini, C .F., Oancea, M .A.: The fingerprints of black holes-shadows and their degeneracies. Class. Quantum Gravity 35(2), 025005 (2018)
Wang, M., Chen, S., Jing, J.: Shadows of a compact object with magnetic dipole by chaotic lensing (2017). arXiv:1710.07172
Singh, B.P.: Rotating charge black holes shadow in quintessence (2017). arXiv:1711.02898
Eiroa, E.F., Sendra, C.M.: Shadow cast by rotating braneworld black holes with a cosmological constant. Eur. Phys. J. C78(2), 91 (2018)
Acknowledgements
We would like to thank E. Berti, J. Grover, E. Radu, H. Rúnarsson, A. Wittig for collaboration on some of the work reviewed in this paper. We would also like to thank all the participants in the Gravitational lensing and black hole shadows workshop that took place in Aveiro, Portugal, in November 2016, for many stimulating discussions on these topics. P.C. is supported by Grant No. PD/BD/114071/2015 under the FCT-IDPASC Portugal Ph.D. program. C.H. acknowledges funding from the FCT-IF programme. This work was partially supported by the H2020-MSCA-RISE-2015 Grant No. StronGrHEP-690904, the H2020-MSCA-RISE-2017 Grant No. FunFiCO-777740 and by the CIDMA Project UID/MAT/04106/2013 The authors would like to acknowledge networking support by the COST Action CA16104.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article belongs to the Topical Collection: Testing the Kerr spacetime with gravitational-wave and electromagnetic observations.
Rights and permissions
About this article
Cite this article
Cunha, P.V.P., Herdeiro, C.A.R. Shadows and strong gravitational lensing: a brief review. Gen Relativ Gravit 50, 42 (2018). https://doi.org/10.1007/s10714-018-2361-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10714-018-2361-9