Skip to main content
Log in

Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space–time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a massless quantum scalar field on a two-dimensional space–time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space–time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies–Fulling–Unruh prescription for computing the renormalized expectation value of the stress–energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle–Hawking vacuum on an eternal black hole space–time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  3. Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  4. Davies, P.C.W., Fulling, S.A., Unruh, W.G.: Energy-momentum tensor near an evaporating black hole. Phys. Rev. D 13, 2720–2723 (1976)

    Article  ADS  Google Scholar 

  5. Christensen, S.M., Fulling, S.A.: Trace anomalies and the Hawking effect. Phys. Rev. D 15, 2088–2104 (1977)

    Article  ADS  Google Scholar 

  6. Hiscock, W.A.: Quantum instability of gravitational collapse in de Sitter space. Phys. Rev. D 39, 1067–1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Denardo, G., Spallucci, E.: Vacuum energy momentum tensors in Schwarzschild-de Sitter space-time. Nuovo Cim. B 55, 97–109 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kay, B.S., Wald, R.M.: Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate Killing horizon. Phys. Rept. 207, 49–136 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Markovic, D., Unruh, W.G.: Vacuum for a massless scalar field outside a collapsing body in de Sitter space-time. Phys. Rev. D 43, 332–339 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Tadaki, S.I., Takagi, S.: Quantum field theory in two-dimensional Schwarzschild-de Sitter space-time 1. Empty space. Prog. Theor. Phys. 83, 941–952 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Tadaki, S., Takagi, S.: Quantum field theory in two-dimensional Schwarzschild-de Sitter space-time. 2: Space with a collapsing star. Prog. Theor. Phys. 83, 1126–1139 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large \(N\) field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Boulware, D.G.: Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D 11, 1404–1423 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hartle, J.B., Hawking, S.W.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188–2203 (1976)

    Article  ADS  Google Scholar 

  15. Maldacena, J.M.: Eternal black holes in anti-de Sitter. J. High Energy Phys. 0304, 021 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Spradlin, M., Strominger, A.: Vacuum states for \({\rm AdS}_{2}\) black holes. J. High Energy Phys. 9911, 021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Morita, T.: Hawking radiation and quantum anomaly in \({\rm AdS}_{2}/{\rm CFT}_{1}\) correspondence. J. High Energy Phys. 0901, 037 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Solodukhin, S.N.: Two-dimensional quantum corrected eternal black hole. Phys. Rev. D 53, 824–835 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hubeny, V.E., Marolf, D., Rangamani, M.: Hawking radiation from AdS black holes. Class. Quantum Gravity 27, 095018 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ortiz, L.: Hawking effect in the eternal BTZ black hole: an example of holography in AdS spacetime. Gen. Relativ. Gravit. 45, 427–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ng, K.K., Hodgkinson, L., Louko, J., Mann, R.B., Martin-Martinez, E.: Unruh-DeWitt detector response along static and circular geodesic trajectories for Schwarzschild-AdS black holes. Phys. Rev. D 90, 064003 (2014)

    Article  ADS  Google Scholar 

  22. Hemming, S., Keski-Vakkuri, E.: Hawking radiation from AdS black holes. Phys. Rev. D 64, 044006 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. Danielsson, U.H., Keski-Vakkuri, E., Kruczenski, M.: Spherically collapsing matter in AdS, holography, and shellons. Nucl. Phys. B 563, 279–292 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Danielsson, U.H., Keski-Vakkuri, E., Kruczenski, M.: Black hole formation in AdS and thermalization on the boundary. J. High Energy Phys. 0002, 039 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Giddings, S.B., Nudelman, A.: Gravitational collapse and its boundary description in AdS. J. High Energy Phys. 0202, 003 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  27. Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D 18, 3565–3576 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  29. Alberghi, G.L., Casadio, R.: Gravitational collapse in anti-de Sitter space–time. Phys. Lett. B 571, 245–249 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Rocha, J.V.: Evaporation of large black holes in AdS: Coupling to the evaporon. J. High Energy Phys. 0808, 075 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Almheiri, A., Marolf, D., Polchinski, J., Stanford, J.D., Sully, J.: An apologia for firewalls. J. High Energy Phys. 1309, 018 (2013)

    Article  ADS  Google Scholar 

  32. Van Raamsdonk, M.: Evaporating firewalls. J. High Energy Phys. 1411, 038 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

P.G.A. thanks Jorma Louko for helpful discussions. E.W. thanks Gavin Duffy for helpful discussions. The work of E.W. is supported by the Lancaster–Manchester–Sheffield Consortium for Fundamental Physics under STFC Grant ST/L000520/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Winstanley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abel, P.G., Winstanley, E. Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space–time. Gen Relativ Gravit 48, 109 (2016). https://doi.org/10.1007/s10714-016-2098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2098-2

Keywords

Navigation