Skip to main content
Log in

Testing two alternative theories to dark matter with the Milky Way dynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Two alternative theories to dark matter are investigated by testing their ability to describe consistently the dynamics of the Milky Way. The first one refers to a modified gravity theory having a running gravitational constant and the second assumes that dark matter halos are constituted by a Bose–Einstein condensation (BEC). The parameters of each model as well as those characterizing the stellar subsystems of the Galaxy were estimated by fitting the rotation curve of the Milky Way. Then, using these parameters, the vertical acceleration profile at the solar position was computed and compared with observations. The modified gravity theory overestimates the vertical acceleration derived from stellar kinematics while predictions of the BEC halo model are barely consistent with observations. However, a dark matter halo based on a collisionless fluid satisfies our consistency test, being the best model able to describe equally well the rotation curve and the vertical acceleration of the Galaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bechtle, P., Bringmann, T., Desch, K., Dreiner, H., Hamer, M., et al.: Constrained Supersymmetry after two years of LHC data: a global view with Fittino. JHEP 06, 098 (2012). [ arXiv:1204.4199]

    Article  ADS  Google Scholar 

  2. Bernabei, R., Belli, P., Cappella, F., Cerulli, R., Dai, C. et al.: Particle Dark Matter in DAMA/LIBRA. arXiv:1007.0595

  3. Kelso, C., Hooper, D., Buckley, M.R.: Toward a consistent picture for CRESST, CoGeNT and DAMA. Phys. Rev. D 85, 043515 (2012). arXiv:1110.5338

  4. Arina, C., Hamann, J., Trotta, R., Wong, Y.Y.: Evidence for dark matter modulation in CoGeNT. JCAP 03, 008 (2012). arXiv:1111.3238

  5. Aprile, E., et al., XENON100 Collaboration: First dark matter results from the XENON100 experiment. Phys. Rev. Lett. 105, 131302 (2010). arXiv:1005.0380

  6. Akerib, D.S., et al., LUX Collaboration: First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112, 091303 (2014). arXiv:1310.8214

  7. Desai, S., et al.: Search for dark matter WIMPs using upward through-going muons in Super–Kamiokande. Phys. Rev. D 70, 083523 (2004)

    Article  ADS  Google Scholar 

  8. Peirani, S., Mohayaee, R., de Freitas Pacheco, J.A.: Indirect search for dark matter: prospects for GLAST. Phys. Rev. D 70, 043503 (2004)

    Article  ADS  Google Scholar 

  9. de Freitas Pacheco, J.A., Peirani, S.: Indirect search for dark matter. Gravit. Cosmol. 11, 169 (2005). arXiv:astro-ph/0503380v2

  10. Lavalle, J., et al., CELESTE collaboration: Indirect search for dark matter in M31 with the CELESTE experiment. Astron. Astrophys. 450, 1 (2006)

  11. Hatzen, F., Hooper, D.: The indirect search for dark matter with IceCube. New J. Phys. 11, 105019 (2009)

    Article  ADS  Google Scholar 

  12. Bringmann, T., Huang, X., Ibarra, A., Vogl, S., Weniger, C.: Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation. JCAP 07, 054 (2012)

    Article  ADS  Google Scholar 

  13. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. ApJ 270, 365 (1983)

    Article  ADS  Google Scholar 

  14. McGaugh, S.S.: Novel test of modified Newtonian dynamics with gas rich galaxies. Phys. Rev. Lett. 106, 121303 (2011)

    Article  ADS  Google Scholar 

  15. Kroupa, P., et al.: Local-group tests of dark-matter concordance cosmology: towards a new paradigm for structure formation. Astron. Astrophys. 523, 32 (2010)

    Article  ADS  Google Scholar 

  16. Clowe, D., Bradac, M., Gonzalez, A.H., Markevitch, M., Randall, S.W., Jones, C., Jaritsky, D.: A direct empirical proof of the existence of dark matter. ApJ Lett. 648, L109 (2006)

    Article  ADS  Google Scholar 

  17. Dodelson, S.: The real problem with MOND. Int. J. Mod. Phys. D 20, 2749 (2011). [ arXiv:1112.1320]

  18. Antoniades, I., Mottola, E.: 4-D quantum gravity in the conformal sector. Phys. Rev. D 45, 2013 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  19. Donoghue, J.F.: Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996 (1994). arXiv:hep-th/9310024

  20. Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D67, 084033 (2003). Erratum. Phys. Rev. D71, 069903 (2005)

  21. Shapiro, I.L.: Effective action of vacuum semiclassical approach. Class. Quantum Gravit. 25, 103001 (2008). arXiv:0801.0216

  22. Shapiro, I.L., Sola, J., Stefancic, H.: Running G and \(\Lambda \) at low energies from physics at \(M_{\chi }\): possible cosmological and astrophysical implications. JCAP 01, 012 (2005). arXiv:hep-ph/0410095v3

  23. Reuter, M., Weyer, H.: Quantum gravity at astrophysical distances? JCAP 0412, 001 (2004). arXiv:hep-th/0410119

  24. Rodrigues, D.C., Letelier, P.S., Shapiro, I.L.: Galaxy rotation curves from General Relativity with Renormalization Group corrections. JCAP 04, 020 (2010). arXiv:0911.4967

  25. Rodrigues, D.C., de Oliveira, P.L.C., Fabris, J.C., Gentile, G.: Modified gravity models and the central cusp of dark matter halos in galaxies. arXiv:1409.7524

  26. Moffat, J.W.: Scalar-tensor-vector gravity theory. JCAP 0603, 004 (2006). arXiv:gr-qc/0506021

  27. Rodrigues, D.C.: Elliptical galaxies kinematics within general relativity with renormalization group effects. JCAP 09, 031 (2012). arXiv:1203.2286

  28. Sin, S.J.: Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D 50, 3650 (1994)

    Article  ADS  Google Scholar 

  29. Lee, J.-W., Koh, I.-G.: Galactic halos and boson stars. Phys. Rev. D 53, 2236 (1996)

    Article  ADS  Google Scholar 

  30. Bohmer, C.G., Harko, T.: Can dark matter be a Bose–Einstein condensate? JCAP 06, 025 (2007)

    Article  ADS  Google Scholar 

  31. Lee, J.-W.: Is dark matter a BEC or scalar field? J. Korean Phys. Soc. 54, 2622 (2009). arXiv:0801.1442

  32. Urena-Lópes, L.A., Bernal, A.: Bosonic gas as a galactic dark matter halo. Phys. Rev. D 82, 123535 (2010)

    Article  ADS  Google Scholar 

  33. Huang, K., Xiong, C., Zhao, X.: Scalar field theory of dark matter. Int. J. Mod. Phys. A 29, 1450074 (2014). arXiv:1304.1595

  34. Harko, T.: Bose–Einstein condensation of dark matter solves the core/cusp problem. JCAP 05, 022 (2011)

    Article  ADS  Google Scholar 

  35. Dwornik, M., Keresztes, Z., Gergely, L.A.: Rotation curves in Bose–Einstein condensate halos. In: Kinjo, N., Nakajima, A. (eds.) Recent Development in Dark Matter Research, p. 195. Nova Science, New York (2014)

    Google Scholar 

  36. Olling, R.P., Merrifield, M.R.: Luminous and dark matter in the Milky Way. MNRAS 326, 164 (2001)

    Article  ADS  Google Scholar 

  37. Burch, B., Cowsik, R.: Properties of galactic dark matter: constraints from astronomical observations. ApJ 779, 35 (2013). arXiv:1306.1920

  38. Kuijken, K., Gilmore, G.: The mass distribution in the galactic disk: I. A technique to determine the integral surface density of the disc near the Sun. MNRAS 239, 571 (1989)

    Article  ADS  Google Scholar 

  39. Polido, P., Jablonski, F., Lépine, J.R.D.: A Galaxy model from 2MASS star counts in the whole sky including the plane. ApJ 778, 32 (2013). arXiv:1308.6238

  40. Garbari, S., Liu, C., Red, J.I., Lake, G.: A new determination of the local dark matter density from the kinematics of K-dwarfs. MNRAS 425, 1445 (2012). arXiv:1206.0015v2

  41. Bhattacharjee, P., Chaudhury, S., Kundu, S.: Rotation curve of the Milky Way out to 200 kpc. ApJ 785, 63 (2014). arXiv:1310.2659

  42. Rodrigues, D.C., Letelier, P.S., Shapiro, I.L.: Galaxy Rotation Curves from General Relativity with Infrared Renormalization Group Effects arXiv:1102.2188v1

  43. Lin, D.N.C., Jones, B.F., Klemola, A.R.: The motion of the Magellanic Clouds, origin of the Magellanic Stream, and the mass of the Milky Way. Astrophys. J. 439, 652 (1995)

    Article  ADS  Google Scholar 

  44. Gibbons, S.L.J., Belokurov, V., Evans, N.W.: Skinny Milky Way, Please, says Sagittarius. arXiv:1406.2243v1

  45. Sakamoto, T., Chiba, M., Beers, T.C.: The mass of the Milky Way: limits from a newly assembled set of halo objects. Astron. Astrophys. 397, 899 (2003)

    Article  ADS  Google Scholar 

  46. Kulessa, A.S., Lynden-Bell, D.: The mass of the Milky Way galaxy. MNRAS 255, 105 (1992)

    Article  ADS  Google Scholar 

  47. Peirani, S., de Freitas Pacheco, J.A.: Mass determination of groups of galaxies: effects of the cosmological constant. New Astron. 11, 325 (2006)

    Article  ADS  Google Scholar 

  48. Nesti, F., Salucci, P.: The dark matter halo of the Milky Way, AD2013. JCAP 07, 016 (2013). arXiv:1304.5127v1

  49. de Boer, W., Weber, M.: The dark matter density in the solar neighborhood reconsidered. JCAP 04, 02 (2011). arXiv:1011.6323

  50. Korchagin, V.I., Girard, T.M., Borkova, T.V., Dinescu, D.I., van Altena, W.F.: Local surface density of the galactic disk from a three-dimensional stellar velocity sample. Astronon. J. 126, 2896 (2003)

    Article  ADS  Google Scholar 

  51. Zhang, L., Rix, H.-W., van de Ven, G., Bovy, J., Liu, C., Zhao, G.: The gravitational potential near the sun from SEGUE K-dwarf kinematics. ApJ 772, 108 (2013)

    Article  ADS  Google Scholar 

  52. Bienaymé, O., et al.: Weighing the local dark matter with RAVE red clump stars. arXiv:1406.6896v1

  53. Kuijken, K., Gilmore, G.: The mass distribution in the galactic disk: II. Determination of the surface mass density of the galactic disk near the Sun. MNRAS 239, 605 (1989)

    Article  ADS  Google Scholar 

  54. Licquia, T.C., Newman, J.A.: Improved estimates of the Milky Way’s stellar mass and star formation rate from hierarchical Bayesian meta-analysis. arXiv:1407.1078v1

Download references

Acknowledgments

P.L.C.O thanks respectively to the Brazilian Agencies Coordenação de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a PhD fellowship and the financial support, which has permitted his one year stay at the Observatoire de la Côte d’Azur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. C. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, P.L.C., de Freitas Pacheco, J.A. & Reinisch, G. Testing two alternative theories to dark matter with the Milky Way dynamics. Gen Relativ Gravit 47, 12 (2015). https://doi.org/10.1007/s10714-014-1849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1849-1

Keywords

Navigation