Skip to main content
Log in

Variations on Birkhoff’s theorem

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The relation between the expanding universe and local vacuum solutions, such as that for the Solar System, is crucially mediated by Birkhoff’s theorem. Here we consider how that relation works, and give generalizations of Birkhoff’s theorem when there are geometric and matter and perturbations. The issue of to what degree dark matter might influence the solar system emerges as a significant question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This is of academic interest only, as charged stars do not exist in reality. If they did, astronomy would be governed by electric forces rather than gravity, because gravity is such a weak force.

References

  1. Baumann, D., Nicolis, A., Senatore, L., Zaldarriaga, M.: Cosmological non-linearities as an effective fluid. (2010) arXiv:1004.2488

  2. Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  3. Birkhoff, G.D.: Relativity and Modern Physics. Harvard University Press, Cambridge (1923)

    MATH  Google Scholar 

  4. Bondi, H.: Spherically symmetric models in general relativity. Mon. Not. R. Astron. Soc. 107, 410 (1947)

    MathSciNet  ADS  MATH  Google Scholar 

  5. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology. Springer, Dordrecht (2011)

    Google Scholar 

  6. Chandrasekhar, S.: On the equations governing the perturbations of the Schwarzschild black hole. Proc. R. Soc. Lon. A 343, 289 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  7. Clarkson, C.: A covariant approach for perturbations of rotationally symmetric spacetimes. Phys. Rev. D 76, 104034 (2007) [arXiv:0708.1398(gr-qc)]

  8. Clarkson, C.J., Barrett, R.K.: Covariant perturbations of Schwarzschild black holes. Class. Quant. Grav. 20, 3855 (2003) [gr-qc/0209051]

    Google Scholar 

  9. Clifton, T., Ferreira, P.G.: Archipelagian cosmology: dynamics and observables in a universe with discretized matter content. Phys. Rev. D 80, 103503 (2009) [arXiv:0907.4109]

    Google Scholar 

  10. Clifton, T.: Cosmology without averaging. Class. Quant. Grav. 28, 164011 (2011) [arXiv:1005.0788]

  11. Clifton, T., Rosquist, K., Tavakol, R.: An exact quantification of backreaction in relativistic cosmology. Phys. Rev. D 86, 043506 (2012) [arXiv:1203.6478]

    Google Scholar 

  12. Deser, S., Franklin, J.: Schwarzschild and Birkhoff a la Weyl. Am. J. Phys. 73, 261–264 (2005). [arXiv:gr-qc/0408067]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D’Inverno, R.: Introducing Einstein’s Relativity. Clarendon Press, Oxford (1992)

    MATH  Google Scholar 

  14. Ehlers, J.: Relativistic hydrodynamics. Abh. Mainz Akad. Wiss. u. Litt. (Math. Nat. kl) 11 (1961); Reprinted GRG: 34, 2171 (2002)

  15. Einstein, A., Straus, E.G.: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 17, 120–124 (1945)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Einstein, A., Straus, E.G.: Corrections and additional remarks to our paper the influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 18, 148 (1945)

    Article  MathSciNet  ADS  Google Scholar 

  17. Ellis, G.F.R.: The dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171–1194 (1967)

    Article  ADS  Google Scholar 

  18. Ellis, G.F.R.: Relativistic cosmology. In: Sachs, R.K. (ed.) General Relativity and Cosmology, Proceedings of XLVII Enrico Fermi Summer School. New York Academic Press, New York (1971); Reprinted GRG 41, 581–660 (2009)

  19. Ellis, G.F.R.: Relativistic cosmology: its nature, aims and problems. In: Bertotti, B., et al. (eds.) General Relativity and Gravitation, pp. 215–288. Reidel, Dordrecht (1984)

    Chapter  Google Scholar 

  20. Ellis, G.F.R., Bruni, M.: A covariant and gauge-free approach to density fluctuations in cosmology. Phys. Rev. D 40, 1804–1818 (1989)

    Google Scholar 

  21. Ellis, G.F.R., Stoeger, W.R.: The evolution of our local cosmic domain: effective causal limits. MNRAS 398, 1527–1536 (2009)

    Article  ADS  Google Scholar 

  22. Ellis, G.F.R., van Elst, H.: Cosmological models. In: Lachièze-Rey, M. (ed.) Theoretical and Observational Cosmology (1999), p. 1. Kluwer, Dordrecht (1998) [gr-qc/9812046]

  23. Goswami, R., Ellis, G.F.R.: Almost Birkhoff theorem in general relativity. Gen. Relativ. Gravit. 43, 2157–2170 (2011) [arXiv:1101.4520 (gr-qc)]

    Google Scholar 

  24. Goswami, R., Ellis, G.F.R.: Birkhoff theorem and matter. Gen. Relativ. Gravit. 44, 2037 (2012) [arXiv:1202.0240]

  25. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge. Appendix B (1973)

  26. Hernandez-Pastora, J.L.: Towards some generalization of Birkhoff’s theorem. AIP Conf. Proc. 1122, 300 (2009)

    Article  ADS  Google Scholar 

  27. Jebsen, J.T.: On the general spherically symmetric solutions of Einstein’s gravitational equations in vacuo. Ark. Mat. Ast. Fys, 15 (1921). Reprinted Gen. Relativ. Gravit. 37(12), 2253–2259 (2005)

  28. Johansen, N.V., Ravndal, F.: On the discovery of Birkhoff’s theorem. Gen. Relativ. Gravit. 38, 537–540 (2006) [arXiv:physics/0508163]

    Google Scholar 

  29. Kottler, F.: Uber die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys. (Berlin) 56, 401461 (1918)

    Google Scholar 

  30. Krasinski, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  31. Lake, K., Roeder, R.C.: Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold. Phys. Rev. D. 15, 35133519 (1977)

    Article  Google Scholar 

  32. Lang, K.R.: The sun from space. Astrophys. Space Sci. 273, 1–6 (2000)

    Article  ADS  Google Scholar 

  33. Lindquist, R.W., Wheeler, J.A.: Dynamics of a lattice universe by the Schwarzschild–Cell method. Rev. Mod. Phys. 29, 432 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203333 (1992)

    Article  MathSciNet  Google Scholar 

  35. Mureika, J.R., Dyer, C.C.: Review: multifractal analysis of packed swiss cheese cosmologies. Gen. Relativ. Gravit. 36, 151–184 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Perlick, V.: Gravitational lensing from a spacetime perspective. Living review in relativity (2004) [http://www.livingreviews.org/lrr-2004-9]

  37. Ribeiro, M.B.: On modelling a relativistic hierarchical (Fractal) cosmology by Tolman’s spacetime. I. Theory. Astrophys. J. 388, 1–8 (1992). [arXiv:0807.0866]

    Article  ADS  Google Scholar 

  38. Schrödinger, E.: Expanding Universes. Cambridge University Press, Cambridge (1959)

    Google Scholar 

  39. Stephani, H., et al.: Exact Solutions to Einstein’s Field Equations, pp. 232–233. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  40. Stewart, J.M.: Perturbations of Friedmann–Robertson–Walker cosmological models. Class. Quantum Grav. 7, 1169 (1990)

    Article  ADS  MATH  Google Scholar 

  41. Uzan, J.-P., Ellis, G.F.R., Larena, J.: A two-mass expanding exact space-time solution. Gen. Relativ. Gravit. 43, 191–205 (2011). [arXiv:1005.1809]

    Google Scholar 

  42. van Elst, H., Ellis, G.F.R.: The covariant approach to LRS perfect fluid spacetime geometries. class. Quantum Grav. 13, 1099 (1996) [gr-qc/9510044]

    Google Scholar 

  43. Vishveshwara, C.V.: Stability of the Schwarzschild metric. Phys. Rev. D 1, 2870–2879 (1970)

    Article  ADS  Google Scholar 

  44. Weyl, H.: Uber die statischen kugelsymmetrischen Losungen von Einsteins ‘kosmologischen’ Gravitationsgleichungen. Phys. Z. 20, 3134 (1919)

    Google Scholar 

Download references

Acknowledgments

We thank Chris Clarkson for helpful comments, and the NRF and UCT Research Committee for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituparno Goswami.

Additional information

This article belongs to the Topical Collection: Progress in Mathematical Relativity with Applications to Astrophysics and Cosmology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, G.F.R., Goswami, R. Variations on Birkhoff’s theorem. Gen Relativ Gravit 45, 2123–2142 (2013). https://doi.org/10.1007/s10714-013-1568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1568-z

Keywords

Navigation