Skip to main content
Log in

Multimessenger astronomy with the Einstein Telescope

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Gravitational waves (GWs) are expected to play a crucial role in the development of multimessenger astrophysics. The combination of GW observations with other astrophysical triggers, such as from gamma-ray and X-ray satellites, optical/radio telescopes, and neutrino detectors allows us to decipher science that would otherwise be inaccessible. In this paper, we provide a broad review from the multimessenger perspective of the science reach offered by the third generation interferometric GW detectors and by the Einstein Telescope (ET) in particular. We focus on cosmic transients, and base our estimates on the results obtained by ET’s predecessors GEO, LIGO, and Virgo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasi R. et al.: Search for high-energy muon neutrinos from the ’naked-eye’ GRB 080319B with the IceCube neutrino telescope. Astrophys. J. 701, 1721–1731 (2009) ArXiv:0902.0131

    ADS  Google Scholar 

  2. Alekseev E.N. et al.: Detection of the neutrino signal from SN1987A in the LMC using the INR Baksan underground scintillation telescope. Phys. Rev. Lett. B 205, 209–214 (1988)

    ADS  Google Scholar 

  3. Alvarez-Muñiz J., Halzen F., Hooper D.W.: High energy neutrinos from gamma ray bursts: event rates in neutrino telescopes. Phys. Rev. D 62(9), 093015 (2000)

    ADS  Google Scholar 

  4. Andersson N., Kokkotas K.D.: Towards gravitational wave asteroseismology. MNRAS 299, 1059–1068 (1998)

    ADS  Google Scholar 

  5. Ando S., Beacom J.F.: Revealing the supernova gamma-ray burst connection with TeV neutrinos. Phys. Rev. Lett. 95(6), 061103 (2005)

    ADS  Google Scholar 

  6. Ando S., Beacom J.F., Yüksel H.: Detection of neutrinos from supernovae in nearby galaxies. Phys. Rev. Lett. 95(17), 171101 (2005)

    ADS  Google Scholar 

  7. Antonioli P. et al.: SNEWS: the SuperNova Early Warning System. New J. Phys. 6, 114 (2004) ArXiv:astro-ph/0406214

    ADS  Google Scholar 

  8. Arun K.G. et al.: Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce.. Class. Quantum Gravity 26(9), 094027 (2009)

    MathSciNet  ADS  Google Scholar 

  9. Aso Y., Márka Z., Finley C., Dwyer J., Kotake K., Márka S.: Search method for coincident events from LIGO and IceCube detectors. Class. Quantum Gravity 25(11), 114039 (2008)

    ADS  Google Scholar 

  10. Autiero D. et al.: Large underground, liquid based detectors for astro-particle physics in europe: scientific case and prospects.. JCAP 0711, 011 (2007)

    ADS  Google Scholar 

  11. Band D.L. et al.: EXIST’s gamma-ray burst sensitivity. Astrophys. J. 673, 1225–1232 (2008)

    ADS  Google Scholar 

  12. Barthelmy S.D. et al.: New soft gamma repeater 0501+4516 was GRB 080822. GRB Coord. Netw. 8113, 1 (2008)

    ADS  Google Scholar 

  13. Barwick S.W.: Development of telescopes for extremely energetic neutrinos: AMANDA, ANITA, and ARIANNA.. Nucl. Instrum. Methods Phys. Res. A 602, 279–284 (2009)

    ADS  Google Scholar 

  14. Berger E. et al.: A new population of high-redshift short-duration gamma-ray bursts. Astrophys. J. 664, 1000–1010 (2007)

    ADS  Google Scholar 

  15. Bionta R.M. et al.: Observation of a neutrino burst in coincidence with supernova SN1987A in the Large Magellanic Cloud. Phys. Rev. Lett. 58, 1494 (1987)

    ADS  Google Scholar 

  16. Blair D.G. et al.: The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. J. Phys. Conf. Ser. 122(1), 012001 (2008)

    ADS  Google Scholar 

  17. Bloom J.S. et al.: A putative early-type host galaxy for GRB 060502B: implications for the progenitors of short-duration hard-spectrum bursts. Astrophys. J. 654, 878–884 (2007)

    ADS  Google Scholar 

  18. Bloom, J.S., et al.: Astro2010 Decadal survey whitepaper: coordinated science in the gravitational and electromagnetic skies (2009). ArXiv: 0902.1527

  19. Bloom J.S. et al.: Observations of the naked-eye GRB 080319B: implications of nature’s brightest explosion. Astrophys. J. 691, 723–737 (2009)

    ADS  Google Scholar 

  20. Burrows A., Livne E., Dessart L., Ott C., Murphy J.: A new mechanism for core-collapse supernova explosions. Astrophys. J. 640, 878–890 (2006) ArXiv:astro-ph/0510687

    ADS  Google Scholar 

  21. Campana S. et al.: The shock break-out of GRB 060218/SN 2006aj. Nature 442, 1008–1010 (2006) ArXiv:astro-ph/0603279

    ADS  Google Scholar 

  22. Cavalier F. et al.: Reconstruction of source location in a network of gravitational wave interferometric detectors. Phys. Rev. D 74(8), 082004 (2006)

    ADS  Google Scholar 

  23. Chapman R., Tanvir N.R., Priddey R.S., Levan A.J.: How common are long gamma-ray bursts in the local Universe. MNRAS 382, L21–L25 (2007)

    ADS  Google Scholar 

  24. Chen, P., Hoffman, K.D.: Astro2010 Decadal survey whitepaper: origin and evolution of cosmic accelerators. The unique discovery potential of an UHE neutrino telescope. http://adsabs.harvard.edu/abs/2009astro2010S.43C (2009)

  25. Cobb B.E., Bailyn C.D., van Dokkum P.G., Natarajan P.: SN 2006aj and the nature of low-luminosity gamma-ray bursts. Astrophys. J. 645, L113–L116 (2006)

    ADS  Google Scholar 

  26. Corsi, A., Owen, B.J.: A theoretical framework for LIGO-Virgo SGR searches: exploring Ioka’s 2001 model. Tech. Rep. LIGO DCC Document T0900242 and VIR-0028A-09, LSC and Virgo collaboration (2009)

  27. Dalal N., Holz D.E., Hughes S.A., Jain B.: Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74(6), 063006 (2006)

    ADS  Google Scholar 

  28. Davies M.B., King A., Rosswog S., Wynn G.: Gamma-ray bursts, supernova kicks, and gravitational radiation. Astrophys. J. 579, L63–L66 (2002)

    ADS  Google Scholar 

  29. de Bellefon, A., et al. MEMPHYS: a large scale water Cerenkov detector at Fréjus (2006). Arxiv: hep-ex/0607026

  30. de Freitas Pacheco J.A.: Do soft gamma repeaters emit gravitational waves. Astron. Astrophys. 336, 397–401 (1998)

    ADS  Google Scholar 

  31. Drenkhahn G., Spruit H.C.: Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 391, 1141–1153 (2002)

    ADS  Google Scholar 

  32. Duez M.D., Liu Y.T., Shapiro S.L., Stephens B.C.: Excitation of magnetohydrodynamic modes with gravitational waves: a testbed for numerical codes. Phys. Rev. D 72(2), 024029 (2005)

    ADS  Google Scholar 

  33. Etienne Z.B., Liu Y.T., Shapiro S.L., Baumgarte T.W.: General relativistic simulations of black-hole–neutron-star mergers: effects of black-hole spin. Phys. Rev. D 79(4), 044024 (2009)

    ADS  Google Scholar 

  34. Fairhurst S.: Triangulation of gravitational wave sources with a network of detectors. NJP 11, 123006 (2009)

    ADS  Google Scholar 

  35. Fulgione W.: Status of supernova neutrino detectors. J. Phys. Conf. Ser. 203, 012077 (2010)

    ADS  Google Scholar 

  36. Gaensler B.M., Chatterjee S.: SGR 0501+4516: proximity to supernova remnant HB9. GRB Coord. Netw. 8149, 1 (2008)

    ADS  Google Scholar 

  37. Galama T.J. et al.: Discovery of the peculiar supernova 1998bw in the error box of GRB980425. Nature 395, 670 (1998) ArXiv:astro-ph/9806175

    ADS  Google Scholar 

  38. Gehrels N. et al.: A new γ-ray burst classification scheme from GRB060614. Nature 444, 1044–1046 (2006)

    ADS  Google Scholar 

  39. Granot J., Ramirez-Ruiz E.: The case for a misaligned relativistic jet from SN 2001em. Astrophys. J. 609, L9–L12 (2004)

    ADS  Google Scholar 

  40. Grindlay, J.: GRB Probes of the high-z universe with EXIST. In: Meegan, C., Kouveliotou, C., Gehrels, N. (eds.) American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 1133, pp. 18–24 (2009)

  41. Grindlay, J.E.: Yost-swift gamma-ray burst science and capabilities needed to EXIST. In: Holt, S.S., Gehrels, N., Nousek, J.A. (eds.) Gamma-Ray Bursts in the Swift Era. American Institute of Physics Conference Series, vol. 836, pp. 631–641 (2006)

  42. Gupta N., Zhang B.: Neutrino spectra from low and high luminosity populations of gamma ray bursts. Astropart. Phys. 27, 386–391 (2007)

    ADS  Google Scholar 

  43. Haiman Z., Kocsis B., Menou K.: The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active galactic nuclei. Astrophys. J. 700, 1952–1969 (2009)

    ADS  Google Scholar 

  44. Hansen B.M.S., Lyutikov M.: Radio and X-ray signatures of merging neutron stars. MNRAS 322, 695–701 (2001)

    ADS  Google Scholar 

  45. Heise, J., in ’t Zand, J., Kippen, R.M., Woods, P.M.: X-ray flashes and X-ray rich gamma ray bursts. In: Costa, E., Frontera, F., Hjorth, J. (eds.) Gamma-Ray Bursts in the Afterglow Era, p. 16 (2001)

  46. Hild, S., Chelkowski, S., Freise, A.: Pushing towards the ET sensitivity using “conventional” technology. Tech. rep., Einstein Telescope. The official sensitivity curve for ET can be found at http://www.et-gw.eu (section “ET sensitivities”) (2008). ArXiv:0810.0604

  47. Hirata K. et al.: Observation of a neutrino burst from the supernova sn1987a. Phys. Rev. Lett. 58, 1490–1493 (1987)

    ADS  Google Scholar 

  48. Hogan, C.J., Schutz, B.F., Cutler, C.J., Hughes, S.A., Holz, D.E. Astro2010 decadal survey whitepaper: precision cosmology with gravitational waves. http://adsabs.harvard.edu/abs/2009astro2010S.130H (2009)

  49. Hogg, D.W.: Distance measures in cosmology (1999). ArXiv: astro-ph/9905116

  50. Holz D.E., Hughes S.A.: Using gravitational-wave standard sirens. Astrophys. J. 629, 15–22 (2005)

    ADS  Google Scholar 

  51. Horowitz C.J., Kadau K.: The breaking strain of neutron star crust and gravitational waves. Phys. Rev. Lett. 102, 191102 (2009) ArXiv:0904.1986

    ADS  Google Scholar 

  52. Horvath J.E.: Energetics of the superflare from SGR1806-20 and a possible associated gravitational wave burst. Mod. Phys. Lett. A 20, 2799–2804 (2005)

    ADS  Google Scholar 

  53. Hughes S.A., Holz D.E.: Cosmology with coalescing massive black holes. Class. Quantum Gravity 20, 65 (2003)

    ADS  Google Scholar 

  54. Ioka K.: Magnetic deformation of magnetars for the giant flares of the soft gamma-ray repeaters. Mon. Not. R. Astron. Soc. 327, 639–662 (2001)

    ADS  Google Scholar 

  55. Ioka K., Razzaque S., Kobayashi S., Mészáros P.: TeV-PeV neutrinos from giant flares of magnetars and the case of SGR 1806-20. Astrophys. J. 633, 1013–1017 (2005)

    ADS  Google Scholar 

  56. Ivezic, Z., et al.: LSST: from science drivers to reference design and anticipated data products (2008). ArXiv: 0805.2366

  57. Jung, C.K.: Feasibility of a next generation underground water Cherenkov detector: UNO (2000). ArXiv: hep-ex/0005046

  58. Kalmus, P.: Search for gravitational wave bursts from soft gamma repeaters. Ph.D. thesis, Columbia University, City of New York (2008)

  59. Kanner J., Huard T.L., Márka S., Murphy D.C., Piscionere J., Reed M., Shawhan P.: LOOC UP locating and observing optical counterparts to gravitational wave bursts. Class. Quantum Gravity 25(18), 184034 (2008)

    ADS  Google Scholar 

  60. Kistler, M.D., Yuksel, H., Ando, S., Beacom, J.F., Suzuki, Y. Core-collapse astrophysics with a five-megaton neutrino detector (2008). ArXiv:0810.1959

  61. Kobayashi S., Mészáros P.: Gravitational radiation from gamma-ray burst progenitors. Astrophys. J. 589, 861–870 (2003)

    ADS  Google Scholar 

  62. Kocsis B., Frei Z., Haiman Z., Menou K.: Finding the electromagnetic counterparts of cosmological standard sirens. Astrophys. J. 637, 27–37 (2006)

    ADS  Google Scholar 

  63. Kocsis B., Loeb A.: Brightening of an accretion disk due to viscous dissipation of gravitational waves during the coalescence of supermassive black holes. Phys. Rev. Lett. 101(4), 041101 (2008)

    ADS  Google Scholar 

  64. Kotake K., Sato K., Takahashi K.: Explosion mechanism, neutrino burst and gravitational wave in core-collapse supernovae. Rep. Prog. Phys. 69, 971–1143 (2006)

    ADS  Google Scholar 

  65. Kouveliotou C. et al.: Identification of two classes of gamma-ray bursts. Astrophys. J. Lett. 413, L101–L104 (1993)

    ADS  Google Scholar 

  66. Kulkarni, S.R., Kasliwal, M.M.: Transients in the local universe (2009). ArXiv:0903.0218

  67. Kulkarni S.R. et al.: Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998)

    ADS  Google Scholar 

  68. Lazzarini, A., Weiss, R.: LIGO science requirements document. Tech. Rep. LIGO-E950018-02 E, LIGO. http://www.ligo.caltech.edu/docs/E/E950018-02.pdf (1996)

  69. Le T., Dermer C.D.: On the redshift distribution of gamma ray bursts in the swift era. Astrophys. J. 661, 394–415 (2006) ArXiv:astro-ph/0610043

    ADS  Google Scholar 

  70. Leahy D.A., Tian W.W.: Radio spectrum and distance of the SNR HB9. A&A 461(3), 1013–1018 (2007)

    ADS  Google Scholar 

  71. Lee W.H., Ramirez-Ruiz E.: The progenitors of short gamma-ray bursts. New J. Phys. 9, 17 (2007)

    ADS  Google Scholar 

  72. Leonor, I., et al.: Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational-wave data (2010). ArXiv:1002.1511

  73. Li L.X., Paczyński B.: Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998)

    ADS  Google Scholar 

  74. Liang E., Zhang B., Virgili F., Dai Z.G.: Low-luminosity gamma-ray bursts as a unique population: luminosity function, local rate, and beaming factor. Astrophys. J. 662, 1111–1118 (2007)

    ADS  Google Scholar 

  75. Lipunov V.M., Panchenko I.E.: Pulsars revived by gravitational waves. Astron. Astrophys. 312, 937–940 (1996)

    ADS  Google Scholar 

  76. Lyutikov M., Blackman E.G.: Gamma-ray bursts from unstable Poynting-dominated outflows. MNRAS 321, 177–186 (2001)

    ADS  Google Scholar 

  77. Lyutikov M., Blandford R. Gamma ray bursts as electromagnetic outflows (2003). ArXiv:astro-ph/0312347

  78. MacFadyen A.I., Woosley S.E.: Collapsars: gamma-ray bursts and explosions in “failed” supernovae. Astrophys. J. 524, 262–289 (1999)

    ADS  Google Scholar 

  79. MacLeod C.L., Hogan C.J.: Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information. Phys. Rev. D 77(4), 043512 (2008)

    ADS  Google Scholar 

  80. Malesani D. et al.: SN 2003lw and GRB 031203: A bright supernova for a faint gamma-ray burst. Astrophys. J. Lett. 609, L5–L8 (2004)

    ADS  Google Scholar 

  81. Mazzali P.A. et al.: An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts. Science 308, 1284–1287 (2005)

    ADS  Google Scholar 

  82. Mereghetti S.: The strongest cosmic magnets: soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225–287 (2008) ArXiv:0804.0250

    ADS  Google Scholar 

  83. Meszaros P.: Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2322 (2006)

    ADS  Google Scholar 

  84. Mirabel I.F., Rodriguez L.F.: Sources of relativistic jets in the Galaxy. Annu. Rev. Astron. Astrophys. 37, 409–442 (1999) ArXiv:astro-ph/9902062

    ADS  Google Scholar 

  85. Moortgat, J., Kuijpers, J.: Indirect visibility of gravitational waves in magnetohydrodynamic plasmas (2005). ArXiv:gr-qc/0503074

  86. Murase K., Ioka K., Nagataki S., Nakamura T.: High-energy neutrinos and cosmic rays from low-luminosity gamma-ray bursts. Astrophys. J. 651, L5–L8 (2006)

    ADS  Google Scholar 

  87. Nakamura, K.: Hyper-Kamiokande: a next generation water Cherenkov detector. In: Shrock, R. (ed.) Neutrinos and Implications for Physics Beyond the Standard Model. World Scientific, p. 307 (2003)

  88. Nakar E.: Short-hard gamma-ray bursts. Phys. Rep. 442, 166–236 (2007)

    ADS  Google Scholar 

  89. Nissanke, S., Hughes, S.A., Holz, D.E., Dalal, N., Sievers, J.L. Exploring short gamma-ray bursts as gravitational-wave standard sirens (2009). ArXiv: 0904.1017

  90. Ott C.D.: The gravitational wave signature of core-collapse supernovae. Class. Quantum Gravity 26, 063001 (2009) ArXiv:0809.0695

    ADS  Google Scholar 

  91. Owen B.J.: Maximum elastic deformations of compact stars with exotic equations of state. Phys. Rev. Lett. 95(21), 211101 (2005)

    ADS  Google Scholar 

  92. Owen B.J.: How photon astronomy affects searches for continuous gravitational waves. Class. Quantum Gravity 26, 204014 (2009)

    ADS  Google Scholar 

  93. Owen, B.J., Reitze, D.H., Whitcomb, S.E. Probing neutron stars with gravitational waves (2009). ArXiv:0903.2603

  94. Perley D.A. et al.: GRB 080503: Implications of a naked short gamma-ray burst dominated by extended emission. Astrophys. J. 696, 1871–1885 (2009)

    ADS  Google Scholar 

  95. Phinney E.S. Finding and using electromagnetic counterparts of gravitational wave sources (2009). ArXiv:0903.0098

  96. Pian E. et al.: An optical supernova associated with the X-ray flash XRF 060218. Nature 442, 1011–1013 (2006)

    ADS  Google Scholar 

  97. Piran T.: The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2005)

    ADS  Google Scholar 

  98. Piro A.L., Pfahl E.: Fragmentation of collapsar disks and the production of gravitational waves. Astrophys. J. 658, 1173–1176 (2007)

    ADS  Google Scholar 

  99. Pradier T.: Coincidences between gravitational wave interferometers and high energy neutrino telescopes. Nucl. Instrum. Meth. A 602, 268–274 (2009) ArXiv:0807.2562

    ADS  Google Scholar 

  100. Punturo, M.: The Virgo sensitivity curve. Tech. Rep. VIR-NOT-PER-1390-51, Virgo note (2004)

  101. Rachen J.P., Mészáros P.: Photohadronic neutrinos from transients in astrophysical sources. Phys. Rev. D 58(12), 123005 (1998)

    ADS  Google Scholar 

  102. Sathyaprakash B.S., Schutz, B., Van Den Broeck, C.: Cosmography with the Einstein Telescope (2009). ArXiv: 0906.4151

  103. Schmidt M.: Luminosity function of gamma-ray bursts derived without benefit of redshifts. Astrophys. J. 552, 36–41 (2001)

    ADS  Google Scholar 

  104. Schutz B.F.: Determining the Hubble constant from gravitational wave observations. Nature 323, 310 (1986)

    ADS  Google Scholar 

  105. Schwartz S.J. et al.: The gamma-ray giant flare from SGR 1806–20: evidence of crustal cracking via initial timescales. Astrophys. J. Lett. 627, L129–L132 (2005)

    ADS  Google Scholar 

  106. Segalis E.B., Ori A.: Emission of gravitational radiation from ultrarelativistic sources. Phys. Rev. D 64(6), 064018 (2001)

    ADS  Google Scholar 

  107. Sesana A., Gair J., Mandel I., Vecchio A.: Observing gravitational waves from the first generation of black holes. Astrophys. J. 698, L129–L132 (2009)

    ADS  Google Scholar 

  108. Shapiro, C., Bacon, D., Hendry, M., Hoyle, B.: Delensing gravitational wave standard sirens with shear and flexion maps (2009)

  109. Shoemaker, D.: Advanced LIGO anticipated sensitivity curves. Tech. Rep. T0900288-v2, LIGO. https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974 (2009)

  110. Soderberg A.M., Frail D.A., Wieringa M.H.: Constraints on off-axis gamma-ray burst jets in type Ibc supernovae from late-time radio observations. Astrophys. J. 607, L13–L16 (2004)

    ADS  Google Scholar 

  111. Soderberg A.M. et al.: The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature 430, 648–650 (2004)

    ADS  Google Scholar 

  112. Soderberg A.M. et al.: Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442, 1014–1017 (2006)

    ADS  Google Scholar 

  113. Soderberg, A.M., et al. Discovery of a relativistic supernova without a gamma-ray trigger (2009). ArXiv: 0908.2817

  114. Sokolov V.V.: On the GRB progenitors: possible consequences for supernovae connection with γ-ray bursts. Bull. Special Astrophys. Obs. 51, 38–47 (2001)

    ADS  Google Scholar 

  115. Spiering, C.: Status and perspectives of astroparticle physics in Europe (2008). ArXiv: 0804.1500

  116. Strohmayer, T.E., Mushotzky, R.F.: Evidence for an intermediate mass black hole in NGC 5408 X-1 (2009)

  117. Sutton, P.J.: A rule of thumb for the detectability of gravitational-wave bursts. Tech. Rep. LIGO- P1000041-v1, LIGO. https://dcc.ligo.org/cgi-bin/private/DocDB/ShowDocument?docid=10614 (2010)

  118. Suzuki Y.: Multi-megaton water Cherenkov detector for a proton decay search – TITAND (2001). ArXiv:hep-ex/0110005

  119. The icecube collaboration: Achterberg, A. et al., the IPN Collaboration: Hurley, K. et al.: The search for muon neutrinos from northern hemisphere Gamma-ray bursts with AMANDA. Astrophys. J. 674, 357–370 (2008)

    Google Scholar 

  120. The LIGO Scientific Collaboration: Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Phys. Rev. D. 72(4), 042002 (2005)

    Google Scholar 

  121. The LIGO Scientific Collaboration: Search for gravitational wave radiation associated with the pulsating tail of the SGR 1806-20 hyperflare of 27 December 2004 using LIGO. Phys. Rev. D 76(6), 062003 (2007)

    Google Scholar 

  122. The LIGO Scientific Collaboration: Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J. 681, 1419–1430 (2008)

    ADS  Google Scholar 

  123. The LIGO Scientific Collaboration: Search for gravitational-wave bursts from soft gamma repeaters. Phys. Rev. Lett. 101(21), 211102 (2008)

    Google Scholar 

  124. The LIGO Scientific Collaboration: Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Phys. Rev. D 77(6), 062004 (2008)

    Google Scholar 

  125. The LIGO Scientific Collaboration: LIGO: the laser interferometer gravitational-wave observatory. Rep. Prog. Phys. 72(7), 076901 (2009)

    Google Scholar 

  126. The LIGO Scientific Collaboration: Stacked search for gravitational waves from the 2006 SGR 1900+14 storm. Astrophys. J. 701, L68–L74 (2009). ArXiv: 0905.0005

    Google Scholar 

  127. The LIGO Scientific Collaboration: Collaboration the Virgo Astrophysically triggered searches for gravitational waves: status and prospects. Class. Quantum Gravity 25(11), 114051 (2008)

    ADS  Google Scholar 

  128. The LIGO Scientific Collaboration and the Virgo Collaboration: Search for gravitational-wave bursts associated with gamma-ray bursts using data from LIGO Science Run 5 and Virgo Science Run 1 (2009). ArXiv: 0908.3824

  129. The Virgo Collaboration: Search for gravitational waves associated with GRB 050915a using the Virgo detector. Class. Quantum Gravity 25(22), 225001 (2008)

    Google Scholar 

  130. The Virgo Collaboration: Advanced Virgo baseline design. Tech. Rep. VIR-0027A-09, Virgo. https://tds.ego-gw.it/ql/?c=6589 (2009)

  131. Thompson C., Duncan R.C.: The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts. MNRAS 275, 255–300 (1995)

    ADS  Google Scholar 

  132. Usov V.V., Katz J.I.: Low frequency radio pulses from gamma-ray bursts?.  Astron. Astrophys. 364, 655–659 (2000)

    ADS  Google Scholar 

  133. van Putten, M.H., et al.: Gravitational radiation from gamma-ray burst-supernovae as observational opportunities for LIGO and Virgo. Phys. Rev. D 69(4), (2004)

  134. Vietri M.: Ultrahigh energy neutrinos from gamma ray bursts. Phys. Rev. Lett. 80, 3690–3693 (1998)

    ADS  Google Scholar 

  135. Vietri M., Stella L.: A Gamma-Ray Burst Model with Small Baryon Contamination. Astrophys. J. Lett. 507, L45–L48 (1998)

    ADS  Google Scholar 

  136. Wang X.Y., Razzaque S., Mészáros P., Dai Z.G.: High-energy cosmic rays and neutrinos from semirelativistic hypernovae. Phys. Rev. D 76(8), 083009 (2007)

    ADS  Google Scholar 

  137. Waxman E.: High energy cosmic-rays and neutrinos from cosmological gamma-ray burst fireballs. Phys. Scripta Vol. T 85, 117 (2000)

    ADS  Google Scholar 

  138. Waxman E., Bahcall J.: High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997)

    ADS  Google Scholar 

  139. Waxman E., Bahcall J.N.: Neutrino afterglow from gamma-ray bursts: 1018 eV. Astrophys. J. 541, 707–711 (2000)

    ADS  Google Scholar 

  140. Wheeler J.C., Yi I., Höflich P., Wang L.: Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts. Astrophys. J. 537, 810–823 (2000)

    ADS  Google Scholar 

  141. Whitcomb, S.E., et al.: Astro2010 decadal survey whitepaper: technology development for third generation ground-based gravitational wave detectors. https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1587 (2009)

  142. Woods, P.M., Thompson, C.: Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates. In: Lewin, W. (ed.) Compact stellar X-ray sources, pp. 547–586. Cambridge University Press (2006)

  143. Woosley S.E.: Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993)

    ADS  Google Scholar 

  144. Woosley S.E., Bloom J.S.: The supernova gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chassande-Mottin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chassande-Mottin, E., Hendry, M., Sutton, P.J. et al. Multimessenger astronomy with the Einstein Telescope. Gen Relativ Gravit 43, 437–464 (2011). https://doi.org/10.1007/s10714-010-1019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1019-z

Keywords

Navigation