Skip to main content
Log in

Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space–time

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Gravitational radiation of binary systems can be studied by using the adiabatic approximation in General Relativity. In this approach a small astrophysical object follows a trajectory consisting of a chained series of bounded geodesics (orbits) in the outer region of a Kerr Black Hole, representing the space time created by a bigger object. In our paper, we study the entire class of orbits, both of constant radius (spherical orbits), as well as non-null eccentricity orbits, showing a number of properties on the physical parameters and trajectories. The main result is the determination of the geometrical locus of all the orbits in the space of physical parameters in Kerr space–time. This becomes a powerful tool to know if different orbits can be connected by a continuous change of their physical parameters. A discussion on the influence of different values of the angular momentum of the hole is given. Main results have been obtained by analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drasco S. and Hughes S.A. (2006). Phys. Rev. D 73: 024027

    Article  ADS  Google Scholar 

  2. Mino Y. (2003). Phys. Rev. D 67: 084027

    Article  ADS  Google Scholar 

  3. Sago N., Tanaka T., Hirida W., Gantz K. and Nakano H. (2006). Prog. Theor. Phys. 115: 873–907

    Article  MATH  ADS  Google Scholar 

  4. Drasco S. and Hughes S.A. (2004). Phys. Rev. D 69: 044015

    Article  ADS  MathSciNet  Google Scholar 

  5. Schmidt W. (2002). Class. Quantum Grav. 19: 2743

    Article  MATH  ADS  Google Scholar 

  6. Goldstein H. (1980). Classical Mechanics. Addison-Wesley, Reading

    MATH  Google Scholar 

  7. Chandrasekhar S. (1983). The Mathematical Theory of Black Holes. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Teo E. (2003). Gen. Rel. Grav. 35: 1909

    Article  MATH  ADS  Google Scholar 

  9. Wilkins D.C. (1972). Phys. Rev. D 5: 814

    Article  ADS  Google Scholar 

  10. Apostolatos T. (1993). Phys. Rev. D 47: 5376

    Article  ADS  MathSciNet  Google Scholar 

  11. Ryan F.D. (1996). Phys. Rev. D 53: 3064

    Article  ADS  Google Scholar 

  12. Kennefick D. and Ori A. (1996). Phys. Rev. D 53: 4319

    Article  ADS  MathSciNet  Google Scholar 

  13. Bardeen J.M., Press W.H. and Teukolsky S.A. (1972). Ap. J. 178: 347

    Article  ADS  Google Scholar 

  14. Struik D.J. (1961). Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge

    MATH  Google Scholar 

  15. Misner Ch., Thorne K. and Wheeler A. (1973). Gravitation. W.H. Freeman and Company, San Francisco

    Google Scholar 

  16. Gair J.R. and Glampedakis K. (2006). Phys. Rev. D 73: 064037 gr-qc/0510129v2

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fayos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayos, F., Teijón, C. Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space–time. Gen Relativ Gravit 40, 2433–2460 (2008). https://doi.org/10.1007/s10714-008-0629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0629-1

Keywords

Navigation