Skip to main content

Advertisement

Log in

Earth’s Electromagnetic Environment

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aplin KL, Harrison RG, Rycroft MJ (2008) Investigating Earth’s atmospheric electricity: a role model for planetary studies. Space Sci Rev 137(1–4):11–27

    Article  Google Scholar 

  • Backus G, Parker RL, Constable C (1996) Foundations of geomagnetism, digitally printed 1st pbk. edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Backus GE (1983) Application of mantle filter theory to the magnetic jerk of 1969. Geophys J Int 74(3):713–746

    Google Scholar 

  • Bastani M, Pedersen LB (2001) Estimation of magnetotelluric transfer functions from radio transmitters. Geophysics 66(4):1038–1051

    Article  Google Scholar 

  • Baumgaertner AJG, Thayer JP, Neely RR, Lucas G (2013) Toward a comprehensive global electric circuit model: atmospheric conductivity and its variability in CESM1(WACCM) model simulations. J Geophys Res Atmos 118(16):9221–9232

    Article  Google Scholar 

  • Bazilevskaya GA, Usoskin IG, Flückiger EO, Harrison RG, Desorgher L, Bütikofer R, Krainev MB, Makhmutov VS, Stozhkov YI, Svirzhevskaya AK, Svirzhevsky NS, Kovaltsov GA (2008) Cosmic ray induced ion production in the atmosphere. Space Sci Rev 137(1–4):149–173

    Article  Google Scholar 

  • Bering EA III, Few AA, Benbrook JR (1998) The global electric circuit. Phys Today 51(10):24

    Article  Google Scholar 

  • Boccippio DJ, Williams ER, Heckman SJ, Lyons WA, Baker IT, Boldi R (1995) Sprites, ELF transients, and positive ground strokes. Science 269(5227):1088–1091

    Article  Google Scholar 

  • Boccippio DJ, Koshak W, Blakeslee R, Driscoll K, Mach D, Buechler D, Boeck W, Christian HJ, Goodman SJ (2000) The optical transient detector (OTD): instrument characteristics and cross-sensor validation. J Atmos Ocean Technol 17(4):441–458

    Article  Google Scholar 

  • Chapman S, Bartels J (1940) Geomagnetism, vol 1. Clarendon Press, Oxford

    Google Scholar 

  • Chave AD, Jones AG (eds) (2012) The magnetotelluric method. Theory and practice. Cambridge University Press, Cambridge

    Google Scholar 

  • Constable CG, Constable SC (2004) Satellite magnetic field measurements: applications in studying the deep earth. In: The state of the planet: frontiers and challenges in geophysics. American Geophysical Union, International Union of Geodesy and Geophysics, Washington, DC

  • Constable S (2007) Geomagnetism. In: Schubert G, Kono M (eds) Treatise on geophysics. Elsevier, Amsterdam, pp 237–276

    Chapter  Google Scholar 

  • Constable S (2011) EM instrumentation. In: Gupta HK (ed) Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 604–608

    Chapter  Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300

    Article  Google Scholar 

  • Daglis IA, Tsurutani BT, Gonzalez WD, Kozyra JU, Orsini S, Cladis J, Kamide Y, Henderson MG, Vassiliadis D (2007) Key features of intense geospace storms–a comparative study of a solar maximum and a solar minimum storm. Planet Space Sci 55(1–2):32–52

    Article  Google Scholar 

  • Everett ME, Constable S, Constable CG (2003) Effects of near-surface conductance on global satellite induction responses. Geophys J Int 153(1):277–286

    Article  Google Scholar 

  • Ferguson IJ (2012) Instrumentation and field procedures. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge, pp 421–473

    Chapter  Google Scholar 

  • Ferguson IJ, Jones AG, Chave AD (2012) Case histories and geological applications. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge, pp 480–536

    Chapter  Google Scholar 

  • Fischbach E, Kloor H, Langel RA, Lui ATY, Peredo M (1994) New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism. Phys Rev Lett 73(4):514–517

    Article  Google Scholar 

  • Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249(4964):48–51

    Article  Google Scholar 

  • Füllekrug M, Constable S (2000) Global triangulation of intense lightning discharges. Geophys Res Lett 27(3):333–336

    Article  Google Scholar 

  • García X, Jones AG (2002) Atmospheric sources for audio-magnetotelluric (AMT) sounding. Geophysics 67(2):448–458

    Article  Google Scholar 

  • García X, Jones AG (2005) A new methodology for the acquisition and processing of audio-magnetotelluric (AMT) data in the AMT dead band. Geophysics 70(5):G119–G126

    Article  Google Scholar 

  • García X, Jones AG (2008) Robust processing of magnetotelluric data in the AMT dead band using the continuous wavelet transform. Geophysics 73(6):F223–F234

    Article  Google Scholar 

  • Gubbins D, Herrero-Bervera E (eds) (2007) Encyclopedia of geomagnetism and paleomagnetism. Springer, Berlin

    Google Scholar 

  • Helliwell RA (2006) Whistlers and related ionospheric phenomena. Dover, Mineola

    Google Scholar 

  • Hulot G, Balogh A, Christensen UR, Constable C, Mandea M, Olsen N (eds) (2010) Terrestrial magnetism. Space science series of ISSI. Springer, Berlin

    Google Scholar 

  • Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackman CH, Marsh DR, Vitt FM, Garcia RR, Fleming EL, Labow GJ, Randall CE, López-Puertas M, Funke B, von Clarmann T, Stiller GP (2008) Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos Chem Phys 8(3):765–785

    Article  Google Scholar 

  • Jacobs JA (1987) Geomagnetism. Academic Press, New York

    Google Scholar 

  • Kelley MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Kivelson MG, Russell CT (eds) (1995) Introduction to space physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Knipp DJ, Biesecker DA (2015) Changing of the guard: Satellite will warn Earth of solar storms. EOS 96

  • Kono M (ed) (2007) Geomagnetism, treatise on geophysics, vol 5, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Madden T, Thompson W (1965) Low-frequency electromagnetic oscillations of the Earth-ionosphere cavity. Rev Geophys 3(2):211

    Article  Google Scholar 

  • Matsushita S, Campbell WH (eds) (1967) Physics of geomagnetic phenomena, vol 94. Academic Press, New York

    Google Scholar 

  • McIlwain CE (1961) Coordinates for mapping the distribution of magnetically trapped particles. J Geophys Res 66(11):3681–3691

    Article  Google Scholar 

  • McNeill JD, Labson VF (1991) Geological mapping using VLF radio fields. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa

    Google Scholar 

  • McPherron R (2005) Magnetic pulsations: their sources and relation to solar wind and geomagnetic activity. Surv Geophys 26(5):545–592

    Article  Google Scholar 

  • Millan RM, Thorne RM (2007) Review of radiation belt relativistic electron losses. J Atmos Solar Terr Phys 69(3):362–377

    Article  Google Scholar 

  • Nabighian MN (ed) (1988) Electromagnetic methods in applied geophysics. Voume 1, theory. Society of Exploration Geophysicists

  • Nabighian MN (ed) (1991) Electromagnetic methods in applied geophysics. Volume 2, Application, Parts A and B, Society of Exploration Geophysicists

  • Nickolaenko A, Hayakawa M (2014) Schumann resonance for Tyros. Springer, Tokyo

    Book  Google Scholar 

  • Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity. Kluwer, Dordrecht

    Google Scholar 

  • Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17(4):393–454

    Article  Google Scholar 

  • Olsen N (2007) Natural sources for electromagnetic induction studies. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, pp 696–700 (563)

  • Olsen N, Kuvshinov A (2004) Modeling the ocean effect of geomagnetic storms. Earth Planets Space 56(5):525–530

    Article  Google Scholar 

  • Olsen N, Hulot G, Sabaka TJ (2010) Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin

    Google Scholar 

  • Pasko VP (2010) Recent advances in theory of transient luminous events. J Geophys Res 115:A00E35

    Google Scholar 

  • Pedersen L, Bastani M, Dynesius L (2006) Some characteristics of the electromagnetic field from radio transmitters in Europe. Geophysics 71(6):G279–G284

    Article  Google Scholar 

  • Pellerin L (2002) Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surv Geophys 23(2–3):101–132

    Article  Google Scholar 

  • Pozzo M, Davies C, Gubbins D, Alfè D (2012) Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485(7398):355–358

    Article  Google Scholar 

  • Reeves GD, Spence HE, Henderson MG, Morley SK, Friedel RHW, Funsten HO, Baker DN, Kanekal SG, Blake JB, Fennell JF, Claudepierre SG, Thorne RM, Turner DL, Kletzing CA, Kurth WS, Larsen BA, Niehof JT (2013) Electron acceleration in the heart of the van Allen radiation belts. Science 341(6149):991–994

    Article  Google Scholar 

  • Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317

    Article  Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics 66(1):174–187

    Article  Google Scholar 

  • Rodi W, Mackie RL (2012) The inverse problem. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge

    Google Scholar 

  • Russell CT (1995) A brief history of solar-terrestrial physics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Rycroft MJ, Harrison RG (2012) Electromagnetic atmosphere-plasma coupling: the global atmospheric electric circuit. Space Sci Rev 168(1–4):363–384

    Article  Google Scholar 

  • Sabaka TJ, Hulot G, Olsen N (2010) Mathematical properties relevant to geomagnetic field modeling. Handbook of geomathematics. Springer, Berlin, pp 503–538

    Chapter  Google Scholar 

  • Shvets A, Hayakawa M (2011) Global lightning activity on the basis of inversions of natural ELF electromagnetic data observed at multiple stations around the world. Surv Geophys 32(6):705–732

    Article  Google Scholar 

  • Simões F, Pfaff R, Freudenreich H (2011) Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophysical Res Lett 38. doi:10.1029/2011GL049668

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Siripunvaraporn W (2012) Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv Geophys 33(1):5–27

    Article  Google Scholar 

  • Siscoe G (2011) Aspects of global coherence of magnetospheric behavior. J Atmos Solar Terr Phys 73(4):402–419

    Article  Google Scholar 

  • Surkov V, Hayakawa M (2014) Ultra and extremely low frequency electromagnetic fields. Springer, Berlin

    Book  Google Scholar 

  • Tezkan B, Saraev A (2008) A new broadband radiomagnetotelluric instrument: applications to near surface investigations. Near Surface Geophys

  • Torr DG (1979) Ionospheric chemistry. Rev Geophys 17(4):510–521

    Article  Google Scholar 

  • Vozoff K (1991) The magnetotelluric method. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics. Society of Exploration Geophysicists, Tulsa, pp 641–711

    Chapter  Google Scholar 

  • Weidelt P, Chave AD (2012) The magnetotelluric response function. In: Chave AD, Jones AG (eds) The magnetotelluric method. Cambridge University Press, Cambridge

    Google Scholar 

  • Whitley T, Füllekrug M, Rycroft M, Bennett A, Wyatt F, Elliott D, Heinson G, Hitchman A, Lewis A, Sefako R, Fourie P, Dyers J, Thomson A, Flower S (2011) Worldwide extremely low frequency magnetic field sensor network for sprite studies. Radio Sci 46. doi:10.1029/2010RS004523

  • Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature. Mon Weather Rev 122(8):1917–1929

    Article  Google Scholar 

  • Williams ER (2001) Sprites, elves and glow discharge tubes. Phys Today

  • Williams ER (2009) CTR Wilson versus GC Simpson: fifty years of controversy in atmospheric electricity. Atmos Res 91(2–4):259–271

    Article  Google Scholar 

  • Williams ER (2010) Origin and context of C. T. R. Wilson’s ideas on electron runaway in thunderclouds. J Geophys Res Space Phys 115. doi:10.1029/2009JA014581

  • Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki ZI (2007) Sprite lightning heard round the world by Schumann resonance methods. Radio Sci 42. doi:10.1029/2006RS003498

  • Zacher G, Tezkan B, Neubauer FM, Hordt A, Müller I (1996) Radiomagnetotellurics, a powerful tool for waste site exploration. Eur J Environ Eng Geophys 1(2):139–160

Download references

Acknowledgments

I thank Ciaran Beggan, Steven Constable, Monika Korte, and Tom Nielsen for useful discussions, the Alexander von Humboldt Foundation for funding that supported this endeavor, and both administrative and research staff at GFZ, Potsdam for their hospitality, and collegial support. I would also like to acknowledge the unprecedented opportunity provided by the 2014 EM Induction workshop organizing committee to work on a review outside my usual area of expertise. I very much appreciated the useful comments on both clarity and content from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Constable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constable, C. Earth’s Electromagnetic Environment. Surv Geophys 37, 27–45 (2016). https://doi.org/10.1007/s10712-015-9351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-015-9351-1

Keywords

Navigation