Skip to main content
Log in

K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles splitting as direct sums

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We use equivariant localization and divided difference operators to determine formulas for the torus-equivariant fundamental cohomology classes of K-orbit closures on the flag variety G / B for various symmetric pairs (GK). We describe an interpretation of these formulas as representing the classes of particular types of degeneracy loci when evaluated at certain Chern classes. For the type A pair \((SL(p+q,{\mathbb C}),S(GL(p,{\mathbb C}) \times GL(q,{\mathbb C})))\), such degeneracy loci are described explicitly, relative to a rank \(p+q\) vector bundle V on a smooth complex variety X equipped with a flag of subbundles and a splitting of V as a direct sum of subbundles of ranks p and q. We conjecture similarly explicit descriptions of the degeneracy loci for all cases in types B and C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achinger, P., Perrin, N.: Spherical Multiple Flags. arXiv:1307.7236

  2. Brion, M.: Equivariant cohomology and equivariant intersection theory. In: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), vol. 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 1–37. Kluwer Academic Publisher, Dordrecht (1998) (Notes by Alvaro Rittatore)

  3. Brion, M.: Rational smoothness and fixed points of torus actions. Transform. Groups 4(2–3), 127–156 (1999). (Dedicated to the memory of Claude Chevalley)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brion, M.: On orbit closures of spherical subgroups in flag varieties. Comment. Math. Helv. 76(2), 263–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brion, M.: Multiplicity-free subvarieties of flag varieties. In: Commutative Algebra (Grenoble/Lyon, 2001), vol. 331 of Contemp. Math., pp. 13–23. American Mathematical Society, Providence, RI (2003)

  6. Fulton, W.: Flags, Schubert polynomials, degeneracy loci, and determinantal formulas. Duke Math. J. 65(3), 381–420 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fulton, W.: Determinantal formulas for orthogonal and symplectic degeneracy loci. J. Differ. Geom. 43(2), 276–290 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Schubert varieties in flag bundles for the classical groups. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), vol. 9 of Israel Mathematical Conference Proceedings, pp. 241–262, Bar-Ilan University, Ramat Gan (1996)

  9. Fulton, W.: Young Tableaux, vol. 35 London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1997). (with applications to representation theory and geometry)

    Google Scholar 

  10. Graham, W.: The class of the diagonal in flag bundles. J. Differe. Geom. 45(3), 471–487 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Ikeda, T., Mihalcea, L.C., Naruse, H.: Double Schubert polynomials for the classical groups. Adv. Math. 226(1), 840–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kresch, A., Tamvakis, H.: Double Schubert polynomials and degeneracy loci for the classical groups. Ann. Inst. Fourier 52(6), 1681–1727 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic subgroups. J. Math. Soc. Jpn. 31(2), 331–357 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matsuki, T., Ōshima, T.: Embeddings of discrete series into principal series. In: The Orbit Method in Representation Theory (Copenhagen, 1988), vol. 82 of Progress in Mathematics, pp. 147–175. Birkhäuser Boston, Boston, MA (1990)

  15. Pragacz, P., Ratajski, J.: Formulas for Lagrangian and orthogonal degeneracy loci; \(\widetilde{Q}\)-polynomial approach. Compos. Math. 107(1), 11–87 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pragacz, P.: Symmetric polynomials and divided differences in formulas of intersection theory. In: Parameter Spaces (Warsaw, 1994), vol. 36 of Banach Center Publ., pp. 125–177. Polish Acad. Sci., Warsaw (1996)

  17. Richardson, R.W., Springer, T.A.: The Bruhat order on symmetric varieties. Geom. Dedicata 35(1–3), 389–436 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Richardson, R.W., Springer, T.A.: Combinatorics and geometry of \(K\)-orbits on the flag manifold. In: Linear Algebraic Groups and Their Representations (Los Angeles, CA, 1992), vol. 153 of Contemp. Math., pp. 109–142. American Mathematical Society, Providence, RI (1993)

  19. Smirnov, Y.E.: Orbites d’un sous-groupe de Borel dans le produit de deux grassmanniennes. Ph.D. thesis, l’Université Joseph Fourier–Grenoble I (2007)

  20. Smirnov, Y.E.: Resolutions of singularities for Schubert varieties in double Grassmannians. Funktsional. Anal. i Prilozhen. 42(2), 56–67 (2008)

    Article  MathSciNet  Google Scholar 

  21. Springer, T.A.: Some results on algebraic groups with involutions. In: Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), vol. 6 of Adv. Stud. Pure Math., pp. 525–543. North-Holland, Amsterdam (1985)

  22. Vogan, D.A.: Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case. Invent. Math. 71(2), 381–417 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Woo, A., Wyser, B.J.: Combinatorial results on \((1,2,1,2)\)-avoiding \(GL(p, {\mathbb{C}}){\times }GL(q, {\mathbb{C}})\)-orbit closures on \(GL(p+q, {\mathbb{C}})/B\). Int. Math. Res. Not. (2015). doi:10.1093/imrn/rnu258

  24. Wyser, B.J., Yong, A.: Polynomials for \(GL_p \times GL_q\) orbit closures in the flag variety. Sel. Math. 20(4), 1083–1110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wyser, B.J.: \(K\)-orbits on \(G/B\) and Schubert constants for pairs of signed shuffles in types \(C\) and \(D\). J. Algebra 364, 67–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wyser, B.J.: Symmetric subgroup orbit closures on flag varieties: Their equivariant geometry, combinatorics, and connections with degeneracy loci. Ph.D. thesis, University of Georgia (2012)

  27. Wyser, B.J.: K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles with symmetric or skew-symmetric bilinear form. Transform. Groups 18(2), 557–594 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wyser, B.J.: Schubert calculus of Richardson varieties stable under spherical Levi subgroups. J. Algebraic Combin. 38(4), 829–850 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamamoto, A.: Orbits in the flag variety and images of the moment map for classical groups. I. Represent. Theory 1, 329–404 (1997). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Wyser.

Appendix: Weak order graphs and tables of formulas in examples

Appendix: Weak order graphs and tables of formulas in examples

See Figs. 1, 2, 3, 4, 5, 6, 7; Tables 5, 6, 7, 8, 9, 10.

Fig. 1
figure 1

\((GL(4,{\mathbb C}),GL(2,{\mathbb C}) \times GL(2,{\mathbb C}))\)

Fig. 2
figure 2

\((SO(7,{\mathbb C}),S(O(4,{\mathbb C}) \times O(3,{\mathbb C})))\)

Fig. 3
figure 3

\((Sp(6,{\mathbb C}),Sp(4,{\mathbb C}) \times Sp(2,{\mathbb C}))\)

Fig. 4
figure 4

\((Sp(4,{\mathbb C}),GL(2,{\mathbb C}))\)

Fig. 5
figure 5

\((SO(6,{\mathbb C}),S(O(4,{\mathbb C}) \times O(2,{\mathbb C})))\)

Fig. 6
figure 6

\((SO(6,{\mathbb C}),GL(3,{\mathbb C}))\)

Fig. 7
figure 7

\((SO(6,{\mathbb C}),S(O(3,{\mathbb C}) \times O(3,{\mathbb C})))\)

Table 5 Formulas for \((SO(7,{\mathbb C}),S(O(4,{\mathbb C}) \times O(3,{\mathbb C})))\)
Table 6 Formulas for \((Sp(6,{\mathbb C}),Sp(4,{\mathbb C}) \times Sp(2,{\mathbb C}))\)
Table 7 Formulas for \((Sp(4,{\mathbb C}),GL(2,{\mathbb C}))\)
Table 8 Formulas for \((SO(6,{\mathbb C}),S(O(4,{\mathbb C}) \times O(2,{\mathbb C})))\)
Table 9 Formulas for \((SO(6,{\mathbb C}),GL(3,{\mathbb C}))\)
Table 10 Formulas for \((SO(6,{\mathbb C}),S(O(3,{\mathbb C}) \times O(3,{\mathbb C})))\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyser, B.J. K-orbit closures on G/B as universal degeneracy loci for flagged vector bundles splitting as direct sums. Geom Dedicata 181, 137–175 (2016). https://doi.org/10.1007/s10711-015-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0117-1

Keywords

Mathematics Subject Classification

Navigation