Skip to main content
Log in

Dupin hypersurfaces with four principal Curvatures, II

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

If M is an isoparametric hypersurface in a sphere S n with four distinct principal curvatures, then the principal curvatures κ1, . . . , κ4 can be ordered so that their multiplicities satisfy m 1 = m 2 and m 3 = m 4, and the cross-ratio r of the principal curvatures (the Lie curvature) equals −1. In this paper, we prove that if M is an irreducible connected proper Dupin hypersurface in R n (or S n) with four distinct principal curvatures with multiplicities m 1 = m 2 ≥  1 and m 3 = m 4 = 1, and constant Lie curvature r = −1, then M is equivalent by Lie sphere transformation to an isoparametric hypersurface in a sphere. This result remains true if the assumption of irreducibility is replaced by compactness and r is merely assumed to be constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cartan E. (1939). Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 45: 335–367

    Article  MATH  MathSciNet  Google Scholar 

  2. Cecil T.E. (1989). Reducible Dupin submanifolds. Geom. Dedicata 32(3): 281–300

    Article  MATH  MathSciNet  Google Scholar 

  3. Cecil T.E. (1992). Lie Sphere Geometry. Universitext. Springer-Verlag, New York

    Google Scholar 

  4. Cecil, T.E., Chi, Q.S., Jensen, G.R.: On Kuiper’s conjecture (2005). Preprint

  5. Cecil T.E. and Jensen G.R. (1998). Dupin hypersurfaces with three principal curvatures. Invent. Math. 132(1): 121–178

    Article  MATH  MathSciNet  Google Scholar 

  6. Cecil T.E. and Jensen G.R. (2000). Dupin hypersurfaces with four principal curvatures. Geom. Dedicata 79(1): 1–49

    Article  MATH  MathSciNet  Google Scholar 

  7. Cecil T.E. and Ryan P.J. (1978). Focal sets, taut embeddings and the cyclides of Dupin. Math. Ann. 236(2): 177–190

    Article  MATH  MathSciNet  Google Scholar 

  8. Cecil, T.E., Ryan, P.J.: Tight and taut immersions of manifolds. In: Research Notes in Mathematics, vol. 107. Pitman (Advanced Publishing Program): Boston, MA (1985)

  9. Ferus D., Karcher H., Münzner H.F., (1981). Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 177(4): 479–502

    Article  MATH  MathSciNet  Google Scholar 

  10. Grove K. and Halperin S. (1987). Dupin hypersurfaces, group actions and the double mapping cylinder. J. Differential Geom. 26(3): 429–459

    MATH  MathSciNet  Google Scholar 

  11. Miyaoka R. (1984). Compact Dupin hypersurfaces with three principal curvatures. Math. Z. 187(4): 433–452

    Article  MATH  MathSciNet  Google Scholar 

  12. Miyaoka R. (1989). Dupin hypersurfaces and a Lie invariant. Kodai Math. J. 12(2): 228–256

    Article  MATH  MathSciNet  Google Scholar 

  13. Miyaoka R. (1989). Dupin hypersurfaces with six principal curvatures. Kodai Math. J. 12(3): 308–315

    Article  MATH  MathSciNet  Google Scholar 

  14. Miyaoka R., Ozawa, T.: Construction of taut embeddings and Cecil-Ryan conjecture. In: Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., vol. 8, pp. 181–189. Academic Press, Boston, MA (1989)

  15. Münzner H.F. (1980). Isoparametrische Hyperflächen in Sphären. Math. Ann. 251(1): 57–71

    Article  MATH  MathSciNet  Google Scholar 

  16. Münzner H.F. (1981). Isoparametrische Hyperflächen in Sphären. II. Über die Zerlegung der Sphäre in Ballbündel. Math. Ann. 256(2): 215–232

    Article  MATH  MathSciNet  Google Scholar 

  17. Pinkall U. (1985). Dupin hypersurfaces. Math. Ann. 270: 427–440

    Article  MATH  MathSciNet  Google Scholar 

  18. Pinkall U. (1985). Dupinsche Hyperflächen in E 4. Manuscripta Math. 51(1–3): 89–119

    Article  MATH  MathSciNet  Google Scholar 

  19. Pinkall U. and Thorbergsson G. (1989). Deformations of Dupin hypersurfaces. Proc. Amer. Math. Soc. 107(4): 1037–1043

    Article  MATH  MathSciNet  Google Scholar 

  20. Singley D.H. (1975). Smoothness theorems for the principal curvatures and principal vectors of a hypersurface. Rocky Mountain J. Math. 5: 135–144

    Article  MATH  MathSciNet  Google Scholar 

  21. Stolz and S. (1999). Multiplicities of Dupin hypersurfaces. Invent. Math. 138(2): 253–279

    Article  MATH  MathSciNet  Google Scholar 

  22. Takagi and R. (1976). A class of hypersurfaces with constant principal curvatures in a sphere. J. Diff. Geom. 11: 225–233

    MATH  Google Scholar 

  23. Thorbergsson G. (1983). Dupin hypersurfaces. Bull. London Math. Soc. 15(5): 493–498

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Jensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecil, T.E., Chi, QS. & Jensen, G.R. Dupin hypersurfaces with four principal Curvatures, II. Geom Dedicata 128, 55–95 (2007). https://doi.org/10.1007/s10711-007-9183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9183-3

Keywords

Mathematics Subject Classification (2000)

Navigation